Análise de sentimentos e comunicação efetiva nas mídias sociais: o caso de um país em desenvolvimento durante a pandemia de COVID-19

Rafael Demczuk, Franciele Cristina Manosso, Jacqueline Laurindo da Silva, Djonata Schiessl

Resumo


Objetivo: Essa pesquisa investiga como o governo de um país em desenvolvimento pode usar a análise de sentimentos nas mídias sociais para melhorar a comunicação durante uma crise nacional.

Método: Coletou-se comentários dos cidadãos nos posts referentes a COVID-19 na página do Facebook do Ministério da Saúde do Brasil (N = 106.292). Os dados foram purificados e os comentários (N = 93.715) foram inseridos no software LIWC para a realização da análise de sentimentos.

Originalidade/Relevância: Compreender a respeito das emoções vividas pelos cidadãos durante uma crise é um dos aspectos mais relevantes do presente estudo. Apresentamos que os vídeos tornam os sentimentos mais fortes e, também, impactam a percepção sobre os conteúdos publicados nas conferências de imprensa e nos posts informativos.

Resultados: Os resultados demonstraram que os posts do governo na mídia social eram compostos por três categorias: informativos, coletiva de imprensa e prevenção. Posteriormente, os achados indicaram que os posts com vídeo (vs. foto) possuem efeito maior sobre emoções positivas, aspectos sociais, aspectos perceptuais, aspectos do trabalho e percepções sobre a morte dos cidadãos. Isso acontece porque, quando o governo usa vídeo (vs. foto), as pessoas têm mais clareza sobre o post que, consequentemente, aumenta a intensidade dos sentimentos.

Contribuições teóricas/metodológicas/práticas: A presente pesquisa contribui, em uma perspectiva gerencial e prática, com a provisão de evidências a respeito de como os cidadãos se sentem durante uma pandemia e qual é a melhor maneira de atenuar seus sentimentos negativos. Contribui, ainda, com a aplicação da análise de sentimentos, método que vem crescendo nos últimos anos principalmente nas discussões a respeito de como os consumidores e as pessoas se sentem acerca de suas experiências de consumo e de sua rotina cotidiana. Logo, tal contexto pode se tornar útil para as estratégias de comunicação desenvolvidas pelo governo durante uma crise nacional.


Palavras-chave


Comunicação; COVID-19; Análise de sentimento; Gerenciamento de Crise

Texto completo:

PDF (English)

Referências


Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T. R., & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of the Total Environment, 138996. DOI: https://doi.org/10.1016/j.scitotenv.2020.138996

Alamoodi, A. H., Zaidan, B. B., Zaidan, A. A., Albahri, O. S., Mohammed, K. I., Malik, R. Q.... & Alaa, M. (2021). Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert systems with applications, 167, 114155. DOI: https://doi.org/10.1016/j.eswa.2020.114155

Al-Aufi, A. S., Al-Harthi, I., Al Hinai, Y., Al-Salti, Z., & Al-Badi, A. (2017). Citizens'perceptions of the government's participatory use of social media. Transforming Government: People, Process and Policy, 11(2), 174-194. DOI: https://doi.org/10.1108/TG-09-2016-0056

Ali, I., & Alharbi, O. M. (2020). COVID-19: Disease, management, treatment, and social impact. Science of the Total Environment, 138861. DOI: https://doi.org/10.1016/j.scitotenv.2020.138861

Ali, Q., Yaseen, M. R., & Khan, M. T. I. (2020). The impact of temperature, rainfall, and health worker density index on road traffic fatalities in Pakistan. Environmental Science and Pollution Research, 1-20. DOI: https://doi.org/10.1007/s11356-020-08233-1

Andrade, E., Barrett, N., Edberg, M., Rivera, M., Latinovic, L., Seeger, M., Goldman-Hawes, A., & Santos-Burgoa, C. (2020). Mortality Reporting and Rumor Generation: An Assessment of Crisis and Emergency Risk Communication following Hurricane María in Puerto Rico. Journal of International Crisis and Risk Communication Research, 3(1), 15–48. DOI: https://doi.org/10.30658/jicrcr.3.1.2

Appiah, O. (2006). Rich media, poor media: The impact of audio/video vs. Text/picturetestimonial ads on browsers' evaluations of commercial web sites and online products. Journal of Current Issues and Research in Advertising, 28(1), 73–86. DOI: https://doi.org/10.1080/10641734.2006.10505192

Arana, J. M., Gordillo, F., Darias, J., & Mestas, L. (2020). Analysis of the efficacy and reliability of the Moodies app for detecting emotions through speech: Does it actually work? Computers in Human Behavior, 104, 106156. DOI: https://doi.org/10.1016/j.chb.2019.106156

Arora, A., Bansal, S., Kandpal, C., Aswani, R., & Dwivedi, Y. (2019). Measuring social media influencer index- insights from facebook, Twitter and Instagram. Journal of Retailing and Consumer Services, 49, 86–101. DOI: https://doi.org/10.1016/j.jretconser.2019.03.012

Arshad, S., & Khurram, S. (2020). Can the government's presence on social media stimulate citizen's online political participation? Investigating the influence of transparency, trust and responsiveness. Government Information Quarterly, 37(3), 101486. DOI: https://doi.org/10.1016/j.giq.2020.101486

Baghchechi, M., Dunn, J., Jaipaul, N., & Jacob, S. E. (2020). Art of prevention: Life in the time of coronavirus. International Journal of Women's Dermatology, 6: 137-141. DOI: https://doi.org/10.1016/j.ijwd.2020.03.046

Bavel, J. J. V., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M., Crockett, M. J., Crum, A. J., Douglas, K. M., Druckman, J. N., Drury, J., Dube, O., Ellemers, N., Finkel, E. J., Fowler, J. H., Gelfand, M., Han, S., Haslam, S. A., Jetten, J., … Willer, R. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nature Human Behaviour, 4(5), 460–471. DOI: https://doi.org/10.1038/s41562-020-0884-z

Boin, A., Kuipers, S., & Overdijk, W. (2013). Leadership in times of crisis: A framework for assessment. International Review of Public Administration, 18(1), 79-91. DOI: https://doi.org/10.1080/12294659.2013.10805241

Carstensen, A., Xu, J., Smith, C. T., & Regier, T. (2015). Language evolution in the lab tends toward informative communication. CogSci, 1, 303–308. Retrieved from: https://bit.ly/3MOOVy9. Access on: 25 May 2022.

Chauhan, S. (2020). Comprehensive review of coronavirus disease 2019 (COVID-19). Biomedical Journal, 43(4):334-340. DOI: 10.1016/j.bj.2020.05.023

Chen, Q., Xu, X., Cao, B., & Zhang, W. (2016). Social media policies as responses for social media affordances: The case of China. Government information quarterly, 33(2), 313-324. DOI: https://doi.org/10.1016/j.giq.2016.04.008

Clinton, B. L. (1992). Informative communication instruction: An application of theory and research to the elementary school classroom. Communication Education, 41(1), 54–67. DOI: https://doi.org/10.1080/03634529209378870

Collins, R. L., Taylor, S. E., Wood, J. V., & Thompson, S. C. (1988). The vividness effect:

Elusive or illusory? Journal of Experimental Social Psychology, 24(1), 1–18. DOI: https://doi.org/10.1016/0022-1031(88)90041-8

Coyle, J. R., & Thorson, E. (2001). The effects of progressive levels of interactivity and vividness in web marketing sites. Journal of Advertising, 30(3), 65–77. DOI: https://doi.org/10.1080/00913367.2001.10673646

Crouse Quinn, S. (2008). Crisis and emergency risk communication in a pandemic: a model for building capacity and resilience of minority communities. Health Promotion Practice, 9(4 Suppl), 18–25. DOI: https://doi.org/10.1177/1524839908324022

del Pilar Salas-Zárate, M., López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, Á., & Alor-Hernández, G. (2014). A study on LIWC categories for opinion mining in Spanish reviews. Journal of Information Science, 40(6), 749-760. DOI: https://doi.org/10.1177/0165551514547842

Down, B., Kulkarni, S., Khan, A. H. A., Barker, B., & Tang, I. (2020). Novel coronavirus (COVID-19) infection: What a doctor on the frontline needs to know. Annals of Medicine and Surgery, 55: 24-29. DOI: https://doi.org/10.1016/j.amsu.2020.05.014

Drummond, C., McGrath, H., & O'Toole, T. (2018). The impact of social media on resource mobilization in entrepreneurial firms. Industrial Marketing Management, 70, 68–89. DOI: https://doi.org/10.1016/j.indmarman.2017.05.009

Egan, K. L., Wolfson, M., Lukacena, K. M., Zelaya, C. M., McLeary, M. S., & Helme, D. W. (2020). Developing a health communication campaign for disposal of unused opioid medications. Addictive Behaviors Reports, 12(April), 100291. DOI: https://doi.org/10.1016/j.abrep.2020.100291

Fan, W., & Gordon, M. D. (2014). The power of social media analytics. Communications of the ACM, 57(6), 74-81. DOI: 10.1145/2602574

Finset, A., Bosworth, H., Butow, P., Gulbrandsen, P., Hulsman, R. L., Pieterse, A. H., Street, R., Tschoetschel, R., & van Weert, J. (2020). Effective health communication – a key factor in fighting the COVID-19 pandemic. Patient Education and Counseling, 103(5), 873–876. DOI: 10.1016/j.pec.2020.03.027

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. DOI: https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Garcia, K., & Berton, L. (2021). Topic detection and sentiment analysis in Twitter content

related to COVID-19 from Brazil and the USA. Applied Soft Computing, 101, 107057. DOI: https://doi.org/10.1016/j.asoc.2020.107057

Gasser, U., Ienca, M., Scheibner, J., Sleigh, J., & Vayena, E. (2020). Digital tools against

COVID-19: taxonomy, ethical challenges, and navigation aid. The Lancet Digital Health,

(8), E425-E434. DOI: https://doi.org/10.1016/S2589-7500(20)30137-0

Geiger, N., & Swim, J. K. (2016). Climate of silence: Pluralistic ignorance as a barrier to

climate change discussion. Journal of Environmental Psychology, 47, 79–90. DOI: https://doi.org/10.1016/j.jenvp.2016.05.002

Goodwin, R., Wiwattanapantuwong, J., Tuicomepee, A., Suttiwan, P., & Watakakosol, R. (2020). Anxiety and public responses to covid-19: Early data from Thailand. Journal of Psychiatric Research, 129, 118-121.DOI: https://doi.org/10.1016/j.jpsychires.2020.06.026

Green, J., Edgerton, J., Naftel, D., Shoub, K., & Cranmer, S. J. (2020). Elusive consensus: Polarization in elite communication on the COVID-19 pandemic. Science Advances, 6(28), 1– 7. DOI: 10.1126/sciadv.abc2717

Guadagno, R. E., Rhoads, K. V. L., & Sagarin, B. J. (2011). Figural vividness and persuasion: Capturing the "elusive" vividness effect. Personality and Social Psychology Bulletin, 37(5), 626–638. DOI: https://doi.org/10.1177/0146167211399585

Gudivada, V. N., Ding, J., & Apon, A. (2017). Data Quality Considerations for Big Data and Machine Learning: Going Beyond Data Cleaning and Transformations. International Journal on Advances in Software, 1(October), 1–20. Retrieved from: https://bit.ly/3GikhKQ. Access on 25 May 2022.

Hanaei, S., & Rezaei, N. (2020). COVID-19: developing from an outbreak to a pandemic. Archives of medical research, 51(6), 582. DOI: 10.1016/j.arcmed.2020.04.021

Harapan, H., Itoh, N., Yufika, A., Winardi, W., Keam, S., Te, H., ... & Mudatsir, M. (2020). Coronavirus disease 2019 (COVID-19): A literature review. Journal of Infection and Public Health, 13:667-673. DOI: https://doi.org/10.1016/j.jiph.2020.03.019

He, W., Wu, H., Yan, G., Akula, V., & Shen, J. (2015). A novel social media competitive

analytics framework with sentiment benchmarks. Information & Management, 52(7), 801- 812. DOI: https://doi.org/10.1016/j.im.2015.04.006

Hemmati-Dinarvand, F., Saedi, S., Hemmati-Dinarvand, M., Zarei, M., & Seghatoleslam, A. (2020). Mysterious Virus: A Review on Behavior and Treatment Approaches of the Novel Coronavirus, 2019-nCoV. Archives of Medical Research, 51: 375-383. DOI: https://doi.org/10.1016/j.arcmed.2020.04.022

Hutto, C., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the International AAAI Conference on Web and social media (Vol. 8, No. 1). Retrieved from: https://ojs.aaai.org/index.php/ICWSM/article/view/14550

Jain, T. I., & Nemade, D. (2010). Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. International Journal of Computer Applications, 7(5), 12–21. DOI: 10.5120/1160-1453

Kübler, R. V., Colicev, A., & Pauwels, K. H. (2020). Social media's impact on the consumer mindset: When to use which sentiment extraction tool? Journal of Interactive Marketing, 50, 136-155. DOI: https://doi.org/10.1016/j.intmar.2019.08.001

Labrecque, L. I. (2014). Fostering consumer-brand relationships in social media environments: The role of parasocial interaction. Journal of Interactive Marketing, 28(2), 134–148. DOI: https://doi.org/10.1016/j.intmar.2013.12.003

Leve, L. D., Fisher, P. A., & Chamberlain, P. (2009). Multidimensional treatment foster care as a preventive intervention to promote resiliency among youth in the child welfare system. Journal of Personality, 77(6), 1869–1902. DOI: 10.1111/j.1467-6494.2009.00603.x

Li, M., Lei, P., Zeng, B., Li, Z., Yu, P., Fan, B., ... & Liu, H. (2020). Coronavirus disease (COVID-19): spectrum of CT findings and temporal progression of the disease. Academic radiology, 27(5): 603-608. DOI: https://doi.org/10.1016/j.acra.2020.03.003

Lin, L., McCloud, R. F., Bigman, C. A., & Viswanath, K. (2017). Tuning in and catching on? Examining the relationship between pandemic communication and awareness and knowledge of MERS in the USA. Journal of Public Health (United Kingdom), 39(2), 282–289. DOI: https://doi.org/10.1093/pubmed/fdw028

Liu, Y. C., Kuo, R. L., & Shih, S. R. (2020). COVID-19: The first documented coronavirus pandemic in history. Biomedical Journal, 43(4):328-333. DOI: https://doi.org/10.1016/j.bj.2020.04.007

Micu, A., Micu, A. E., Geru, M., & Lixandroiu, R. C. (2017). Analyzing user sentiment in social media: Implications for online marketing strategy. Psychology and Marketing, 34(12), 1094– 1100. DOI: https://doi.org/10.1002/mar.21049

Ministério da Saúde. (2020). Painel Coronavírus. 22 July 2020. Retrieved from: https://covid.saude.gov.br/. Access: 25 jan. 2021.

Moro, S., Rita, P., & Vala, B. (2016). Predicting social media performance metrics and evaluation of the impact on brand building: A data mining approach. Journal of Business Research, 69(9), 3341–3351. DOI: https://doi.org/10.1016/j.jbusres.2016.02.010

Pauwels, K., Aksehirli, Z., & Lackman, A. (2016). Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance. International Journal of Research in Marketing, 33(3), 639–655. DOI: https://doi.org/10.1016/j.ijresmar.2016.01.005

Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The development and psychometric properties of LIWC2015. DOI: https://doi.org/10.15781/T29G6Z

Pimmer, C., Linxen, S., & Gröhbiel, U. (2012). Facebook as a learning tool? A case study on the appropriation of social network sites from mobile phones in developing countries. British. Journal of Educational Technology, 43(5), 726–738. DOI: https://doi.org/10.1111/j.1467-8535.2012.01351.x

Raman, K., Mantrala, M. K., Sridhar, S., & Tang, Y. (Elina). (2012). Optimal Resource Allocation with Time-varying Marketing Effectiveness, Margins and Costs. Journal of Interactive Marketing, 26(1), 43–52. DOI: 10.1016/j.intmar.2011.05.001

Ranganathan, J., & Tzacheva, A. (2019). Emotion Mining in Social Media Data. Procedia Computer Science, 159, 58-66. DOI: https://doi.org/10.1016/j.procs.2019.09.160

Ratzan, S. C., Sommariva, S., & Rauh, L. (2020). Enhancing global health communication during a crisis: Lessons from the COVID-19 pandemic. Public Health Research and Practice, 30(2). DOI: https://doi.org/10.17061/phrp3022010

Reynolds, B., & Quinn Crouse, S. (2008). Effective communication during an influenza pandemic: the value of using a crisis and emergency risk communication framework. Health Promotion Practice, 9(4 Suppl), 13–17. DOI: DOI: https://doi.org/10.1177/1524839908325267

Serrano-Guerrero, J., Olivas, J.A., Romero, F.P. and Herrera-Viedma, E. (2015), Sentiment analysis: a review and comparative analysis of web services, Information Sciences, Vol. 311, pp. 18-38. DOI: https://doi.org/10.1016/j.ins.2015.03.040

Silva, P., Tavares, A. F., Silva, T., & Lameiras, M. (2019). The good, the bad and the ugly: Three faces of social media usage by local governments. Government Information Quarterly, 36(3), 469-479. DOI: https://doi.org/10.1016/j.giq.2019.05.006

Singh, P., Dwivedi, Y. K., Kahlon, K. S., Sawhney, R. S., Alalwan, A. A., & Rana, N. P. (2020). Smart monitoring and controlling of government policies using social media and cloud computing. Information Systems Frontiers, 22(2), 315-337. DOI: https://doi.org/10.1007/s10796-019-09916-y

Sobral, F., Carvalho, J., Łagowska, U., Furtado, L. M. G. P., & Grobman, M. (2020). Better safe than sorry: leadership sensemaking in the time of COVID-19. Revista de Administração Pública, 54(4), 758-781. DOI: 10.1590/0034-761220200262x

Statista. (2021). Facebook users in Brazil. Retrieved from: https://bit.ly/3ce8Fvs. Access: 25 jan. 2021.

Sulistyanto, A., & Jamil, A. (2020). Communication Gaps in Crisis Communication Management: Study at the Ministry of Transportation. 459(Jcc), 41–47. DOI: http://dx.doi.org/10.2991/assehr.k.200818.010

Talwar, S., Dhir, A., Kaur, P., Zafar, N., & Alrasheedy, M. (2019). Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior. Journal of Retailing and Consumer Services, 51, 72–82. DOI: https://doi.org/10.1016/j.jretconser.2019.05.026

Tausczik, Y. R., & Pennebaker, J. W. (2010). The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology, 29(1), 24–54. DOI: http://dx.doi.org/10.1177/0261927X09351676

Terres, M. S., Rohden, S. F., Vedolin, L., Machado, B. F. H., Magnus, K., Altmann, A., & Schiavon, D. E. B. (2020). The COVID-19 pandemic: paths for future research in marketing involving the regulatory role of prosocial consumption. Brazilian Journal of Marketing, 19(3), 611-641. DOI: https://doi.org/10.5585/remark.v19i3.17103

Thaichon, P. (2017). Consumer socialization process: The role of age in children's online shopping behavior. Journal of Retailing and Consumer Services, 34, 38–47. DOI: https://doi.org/10.1016/j.jretconser.2016.09.007

Todisco, L., Tomo, A., Canonico, P., Mangia, G., & Sarnacchiaro, P. (2020). Exploring social media usage in the public sector: Public employees' perceptions of ICT's usefulness in delivering value added. Socio-Economic Planning Sciences, 100858. DOI: https://doi.org/10.1016/j.seps.2020.100858

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting elections with Twitter: What 140 characters reveal about political sentiment. ICWSM 2010 - Proceedings of the 4th International AAAI Conference on Weblogs and social media, 178–185. Retrieved from: https://ojs.aaai.org/index.php/ICWSM/article/view/14009

Van Assche, J., Politi, E., Van Dessel, P., & Phalet, K. (2020). To punish or to assist? Divergent reactions to ingroup and outgroup members disobeying social distancing. British Journal of Social Psychology, 59(3), 594–606. DOI: https://doi.org/10.1111/bjso.12395

Van Dieijen, M., Borah, A., Tellis, G. J., & Franses, P. H. (2019). Big Data Analysis of Volatility Spillovers of Brands across Social Media and Stock Markets. Industrial Marketing Management, December 2018, 1–20. DOI: https://doi.org/10.1016/j.indmarman.2018.12.006

Vieira, C. M., Franco, O. H., Restrepo, C. G., & Abel, T. (2020). COVID-19: The forgotten priorities of the pandemic. Maturitas, 136: 38-41. DOI: https://doi.org/10.1016/j.maturitas.2020.04.004

Walsham, G. (2020). Health information systems in developing countries: some reflections on information for action. Information Technology for Development, 26(1), 194–200. DOI: https://doi.org/10.1080/02681102.2019.1586632

Wang, W. (2020). Mediatised Politics: A Perspective for Understanding Political Communication in China. Javnost, 27(2), 112–125. DOI: https://doi.org/10.1080/13183222.2020.1727277

Wang, Y., Hao, H., & Platt, L. S. (2021). Examining risk and crisis communications of government agencies and stakeholders during early-stages of COVID-19 on Twitter. Computers in human behavior, 114, 106568. DOI: https://doi.org/10.1016/j.chb.2020.106568

Wonodi, C. B., Privor-Dumm, L., Aina, M., Pate, A. M., Reis, R., Gadhoke, P., & Levine, O. S. (2012). Using social network analysis to examine the decision-making process on new vaccine introduction in Nigeria. Health policy and planning, 27(suppl_2), ii27-ii38. DOI: https://doi.org/10.1093/heapol/czs037

World Health Organization (2021). Situation Reports. Retrieved from: https://bit.ly/3c8omEn. Access: 25 jan. 2021.

World Health Organization. (2005). 7 Steps to Effective Media Communication During Public Health Emergencies. WHO, 1–02. Retrieved from: https://bit.ly/39Xz29K. Access on: 25 may. 2022.

Wyman, P. A., Rulison, K., Pisani, A. R., Alvaro, E. M., Crano, W. D., Schmeelk-Cone, K., Keller Elliot, C., Wortzel, J., Pickering, T. A., & Espelage, D. L. (2021). Above the influence of vaping: Peer leader influence and diffusion of a network-informed preventive intervention. Addictive Behaviors, 113, 106693. DOI: 10.1016/j.addbeh.2020.106693

Xu, Y., Regier, T., & Malt, B. C. (2016). Historical Semantic Chaining and Efficient Communication: The Case of Container Names. Cognitive Science, 40(8), 2081–2094. DOI: https://doi.org/10.1111/cogs.12312

Yang, H., & Ma, J. (2020). How an Epidemic Outbreak Impacts Happiness: Factors that Worsen (vs. Protect) Emotional Well-being during the Coronavirus Pandemic. Psychiatry Research, 113045. DOI: 10.1016/j.psychres.2020.113045




DOI: https://doi.org/10.5585/remark.v21i3.19271

Apontamentos

  • Não há apontamentos.


Direitos autorais 2022 Revista Brasileira de Marketing

Revista Brasileira de Marketing – ReMark

Brazilian Journal of Marketing - BJM

e-ISSN: 2177-5184
https://periodicos.uninove.br/remark

Rev. Bras. Mark. - ReMark ©2022 Todos os direitos reservados.

Esta obra está licenciada com uma Licença 
Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional