Fundações e tendências no relacionamento entre analytics e marketing

Autores

DOI:

https://doi.org/10.5585/remark.v20i1.17554

Palavras-chave:

Bibliometria, Analytics, Marketing, Capabilidades Dinâmicas.

Resumo

Objetivo: O propósito do presente artigo é pavimentar o caminho de futuras pesquisas quantitativas no campo de analytics em marketing, contextualizado com base na Visão Baseada em Recursos e na literatura sobre Capabilidades Dinâmicas.

Método/Abordagem: Constitui-se como uma revisão aplicada de cunho bibliométrico sobre o relacionamento entre as subáreas. Utilizamos análises de cluster para prover um mapeamento esquemático da interseção dessas literaturas para pesquisadores iniciantes e experientes.

Resultados: Após propor as capabilidades analíticas adaptativas, são sugeridos caminhos de avanço científico nas literaturas de marketing e estratégia, indicando possíveis construtos endógenos, exógenos e covariáveis para uma agenda de pesquisa voltada para situações de moderação e mediação.

Implicações teóricas e metodológicas: Foi construída uma rede nomológica que interliga o relacionamento emergente entre marketing, analytics e capabilidades dinâmicas que auxilia na escolha de construtos atualizados e relevantes para estudos quantitativos futuros.

Originalidade/valor: Destaca-se o alicerce da relação entre analytics e marketing, e assim são elucidadas as tendências de pesquisa e construtos objetivos otimizados para realização de pesquisas futuras sob a ótica das capabilidades dinâmicas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Alamir Costa Louro, Universidade Federal do Espírito Santo, UFES, Brasil.

Doutorando em Administração, Mestrado em Administração de Empresas. Graduado em Ciência da Computação - UFES, 

 

Marcelo Moll Brandão, Universidade Federal do Espírito Santo, UFES, Brasil.

Doutorando FGV.

Arthur França Sarcinelli, Universidade Federal do Espírito Santo, UFES, Brasil.

Doutorando em Administração de Empresas pela Fundação Getúlio Vargas (FGV-EAESP).

Referências

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007.

Barney, J. B. (2014). How marketing scholars might help address issues in resource-based theory. Journal of the Academy of Marketing Science, 42(1), 24–26. https://doi.org/10.1007/s11747-013-0351-8.

Barrales-Molina, V., Martínez-López, F. J., & Gázquez-Abad, J. C. (2014). Dynamic marketing capabilities: Toward an integrative framework. International Journal of Management Reviews, 16(4), 397–416. https://doi.org/10.1111/ijmr.12026.

Braganza, A., Brooks, L., Nepelski, D., Ali, M., & Moro, R. (2017). Resource management in big data initiatives: Processes and dynamic capabilities. Journal of Business Research, 70, 328–337. https://doi.org/10.1016/j.jbusres.2016.08.006.

Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235. https://doi.org/10.1177/053901883022002003.

Chandler, J. D., & Wieland, H. (2010). Embedded Relationships: Implications for Networks, Innovation, and Ecosystems. Journal of Business Market Management, 4(4), 199–215. https://doi.org/10.1007/s12087-010-0041-5.

Chang, W., Park, J. E., & Chaiy, S. (2010). How does CRM technology transform into organizational performance? A mediating role of marketing capability. Journal of Business Research, 63(8), 849–855. https://doi.org/10.1016/j.jbusres.2009.07.003.

Chen, L., & Nath, R. (2018). Business analytics maturity of firms: an examination of the relationships between managerial perception of IT, business analytics maturity and success. Information Systems Management, 35(1), 62–77. https://doi.org/10.1080/10580530.2017.1416948.

Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data To Big Impact. MIS Quarterly, 36(4), 1165–1188.

Chou, C., Chang, C. J., & Peng, J. (2016).Integrating XBRL data with textual information in Chinese : A semantic web approach. International Journal of Accounting Information Systems, 21, 32–46. https://doi.org/10.1016/j.accinf.2016.04.002.

Chuang, S.-H., & Lin, H.-N. (2013). The roles of infrastructure capability and customer orientation in enhancing customer-information quality in CRM systems: Empirical evidence from Taiwan. International Journal of Information Management, 33(2), 271–281. https://doi.org/10.1016/j.ijinfomgt.2012.12.003.

Chuang, S. H., & Lin, H. N. (2017). Performance implications of information-value offering in e-service systems: Examining the resource-based perspective and innovation strategy. Journal of Strategic Information Systems, 26(1), 22–38. https://doi.org/10.1016/j.jsis.2016.09.001.

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity : A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128–152. https://doi.org/10.2307/2393553.

Conti, C. R., Parente, R., & de Vasconcelos, F. C. (2015).When distance does not matter: Implications for Latin American multinationals. Journal of Business Research, 69(6), 1980–1992. https://doi.org/10.1016/j.jbusres.2015.10.144.

Cooke, A. D. J., & Zubcsek, P. P. (2017). The Connected Consumer: Connected Devices and the Evolution of Customer Intelligence. Journal of the Association for Consumer Research, 2(2).

Côrte-Real, N., Oliveira, T., & Ruivo, P. (2017).Assessing business value of Big Data Analytics in European firms. Journal of Business Research, 70, 379–390. https://doi.org/10.1016/j.jbusres.2016.08.011.

Day, G. S. (2011).Closing the Marketing Capabilities Gap. Journal of Marketing, 75(4), 183–195. https://doi.org/10.1509/jmkg.75.4.183, G. S. (2014).An outside-in approach to resource-based theories. Journal of the Academy of Marketing Science, 42(1), 27–28. https://doi.org/10.1007/s11747-013-0348-3.

Freeman, L. C. (1978). Centrality in Social Networks Conceptual Clarification. Social Networks, 1, 215–239.

Germann, F., Lilien, G. L., Fiedler, L., & Kraus, M. (2014). Do Retailers Benefit from Deploying Customer Analytics? Journal of Retailing, 90(4), 587–593. https://doi.org/10.1016/j.jretai.2014.08.002.

Grover, P. (2017). Big Data Analytics : A Review on Theoretical Contributions and Tools Used in Literature. Global Journal of Flexible Systems Management, 18(3), 203–229. https://doi.org/10.1007/s40171-017-0159-3.

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102.

Hong, W., Chan, F. K. Y., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2013). A Framework and Guidelines for Context-Specific Theorizing in Information Systems Research. Information Systems Research, 7047(2004), 1–26.

Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2004).A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research. Journal of Consumer Research, 30(September 2003), 199–218. https://doi.org/10.1086/376806.

Jayachandran, S., Sharma, S., Kaufman, P., & Raman, P. (2005).The role of relational information processes and technology use in customer relationship management. Journal of Marketing, 69(4), 177–192. https://doi.org/10.1509/jmkg.2005.69.4.177.

Johnson, J. S., Friend, S. B., & Lee, H. S. (2017). Big Data Facilitation, Utilization, and Monetization: Exploring the 3Vs in a New Product Development Process. Journal of Product Innovation Management, 34(5), 640–658. https://doi.org/10.1111/jpim.12397.

Kessler, M. M. (1963). Bibliographic Coupling Between Scientific Papers. American Documentation, 14(1), 10–25.

Khanagha, S., Volberda, H., & Oshri, I. (2017). Customer Co-Creation and Exploration of Emerging Technologies: The Mediating Role of Managerial Attention and Initiatives. Long Range Planning, 50, 221–242. https://doi.org/10.1016/j.lrp.2015.12.019.

Kim, H. J., Jo, N. O., & Shin, K. S. (2016).Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction. Expert Systems with Applications, 59, 226–234. https://doi.org/10.1016/j.eswa.2016.04.027.

Kumar, A., Bezawada, R., Rishika, R., Janakiraman, R., & Kannan, P. K. (2016). From social to sale: The effects of firm-generated content in social media on customer behavior. Journal of Marketing, 80(1), 7–25. https://doi.org/10.1509/jm.14.0249.

MacKenzie, Podsakoff, & Podsakoff. (2011). Construct Measurement and Validation Procedures in MIS and Behavioral Research: Integrating New and Existing Techniques. MIS Quarterly, 35(2), 293. https://doi.org/10.2307/23044045.

MacRoberts, M. H., & MacRoberts, B. R. (2010). Problems of citation analysis: A study of uncited and seldom-cited influences. Journal of the American Society for Information Science and Technology, 61(1), 1–12. https://doi.org/10.1002/asi.21228.

Morgan, N. A., Zou, S., Vorhies, D. W., & Katsikeas, C. S. (2003). Experiential and Informational Knowledge, Architectural Marketing Capabilities, and the Adaptive Performance of Export Ventures: A Cross-National Study. Decision Sciences, 34(2), 287–321. https://doi.org/10.1111/1540-5915.02375.

Ozdemir, S., Kandemir, D., & Eng, T. (2017).The role of horizontal and vertical new product alliances in responsive and proactive market orientations and performance of industrial manufacturing firms. Industrial Marketing Management, 64(July), 25–35. https://doi.org/10.1016/j.indmarman.2017.03.006.

Pavlou, P. A., & Sawy, O. A. E. (2010). The “third hand”: IT-enabled competitive advantage in turbulence through improvisational capabilities. Information Systems Research, 21(3), 443–471. https://doi.org/10.1287/isre.1100.0280.

Popovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2014). How information-sharing values influence the use of information systems: An investigation in the business intelligence systems context. The Journal of Strategic Information Systems, 23, 270–283. https://doi.org/10.1016/j.jsis.2014.08.003.

Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2016). The impact of big data analytics on firms ’ high value business performance. Information Systems Frontiers, 20(2), 209–222. https://doi.org/10.1007/s10796-016-9720-4.

Quevedo-Silva, F., Santos, E. B. A., Brandão, M. M., & Vils, L. (2016). ESTUDO BIBLIOMÉTRICO: ORIENTAÇÕES SOBRE SUA APLICAÇÃO. Revista Brasileira de Marketing, 15(2), 246–262. https://doi.org/10.5585/remark.v15i2.3274.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/.

Rapp, A., Trainor, K. J., & Agnihotri, R. (2010). Performance implications of customer-linking capabilities: Examining the complementary role of customer orientation and CRM technology. Journal of Business Research, 63(11), 1229–1236. https://doi.org/10.1016/j.jbusres.2009.11.002.

Rosati, P., Cummins, M., Deeney, P., Gogolin, F., van der Werff, L., & Lynn, T. (2017). The effect of data breach announcements beyond the stock price: Empirical evidence on market activity. International Review of Financial Analysis, 49, 146–154. https://doi.org/10.1016/j.irfa.2017.01.001.

Sheng, J., Amankwah-amoah, J., & Wang, X. (2017).A multidisciplinary perspective of big data in management research. International Journal of Production Economics, 191(November 2016), 97–112. https://doi.org/10.1016/j.ijpe.2017.06.006.

Tan, K. H., & Zhan, Y. (2017). Improving new product development using big data: a case study of an electronics company. R and D Management, 47(4), 570–582. https://doi.org/10.1111/radm.12242.

Tan, K. H., Zhan, Y. Z., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, 165(July 2015), 223–233. https://doi.org/10.1016/j.ijpe.2014.12.034.

Teo, T. S. H., Nishant, R., & Koh, P. B. L. (2016). Do shareholders favor business analytics announcements? Journal of Strategic Information Systems, 25(4), 259–276. https://doi.org/10.1016/j.jsis.2016.05.001.

Trainor, K. J., Andzulis, J., Rapp, A., & Agnihotri, R. (2014). Social media technology usage and customer relationship performance: A capabilities-based examination of social CRM. Journal of Business Research, 67(6), 1201–1208. https://doi.org/10.1016/j.jbusres.2013.05.002.

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3.

Vogel, R., & Güttel, W. H. (2013). The dynamic capability view in strategic management: A bibliometric review. International Journal of Management Reviews, 15(4), 426–446. https://doi.org/10.1111/ijmr.12000.

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009.

Wang, Y., & Byrd, T. A. (2017).Business analytics-enabled decision-making effectiveness through knowledge absorptive capacity in health care. Journal of Knowledge Management, 21(3), 517–539. https://doi.org/10.1108/JKM-08-2015-0301.

Wang, Y., & Hajli, N. (2017).Exploring the path to big data analytics success in healthcare. Journal of Business Research, 70, 287–299. https://doi.org/10.1016/j.jbusres.2016.08.002.

Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97–121. https://doi.org/10.1509/jm.15.0413.

Xu, Z., Frankwick, G. L., & Ramirez, E. (2016). Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. Journal of Business Research, 69(5), 1562–1566. https://doi.org/10.1016/j.jbusres.2015.10.017.

Downloads

Publicado

09.03.2021

Como Citar

Louro, A. C., Brandão, M. M., & Sarcinelli, A. F. (2021). Fundações e tendências no relacionamento entre analytics e marketing. ReMark - Revista Brasileira De Marketing, 20(1), 1–26. https://doi.org/10.5585/remark.v20i1.17554

Edição

Seção

Artigos