Fundações e tendências no relacionamento entre analytics e marketing
DOI:
https://doi.org/10.5585/remark.v20i1.17554Palavras-chave:
Bibliometria, Analytics, Marketing, Capabilidades Dinâmicas.Resumo
Objetivo: O propósito do presente artigo é pavimentar o caminho de futuras pesquisas quantitativas no campo de analytics em marketing, contextualizado com base na Visão Baseada em Recursos e na literatura sobre Capabilidades Dinâmicas.
Método/Abordagem: Constitui-se como uma revisão aplicada de cunho bibliométrico sobre o relacionamento entre as subáreas. Utilizamos análises de cluster para prover um mapeamento esquemático da interseção dessas literaturas para pesquisadores iniciantes e experientes.
Resultados: Após propor as capabilidades analíticas adaptativas, são sugeridos caminhos de avanço científico nas literaturas de marketing e estratégia, indicando possíveis construtos endógenos, exógenos e covariáveis para uma agenda de pesquisa voltada para situações de moderação e mediação.
Implicações teóricas e metodológicas: Foi construída uma rede nomológica que interliga o relacionamento emergente entre marketing, analytics e capabilidades dinâmicas que auxilia na escolha de construtos atualizados e relevantes para estudos quantitativos futuros.
Originalidade/valor: Destaca-se o alicerce da relação entre analytics e marketing, e assim são elucidadas as tendências de pesquisa e construtos objetivos otimizados para realização de pesquisas futuras sob a ótica das capabilidades dinâmicas.
Downloads
Referências
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007.
Barney, J. B. (2014). How marketing scholars might help address issues in resource-based theory. Journal of the Academy of Marketing Science, 42(1), 24–26. https://doi.org/10.1007/s11747-013-0351-8.
Barrales-Molina, V., Martínez-López, F. J., & Gázquez-Abad, J. C. (2014). Dynamic marketing capabilities: Toward an integrative framework. International Journal of Management Reviews, 16(4), 397–416. https://doi.org/10.1111/ijmr.12026.
Braganza, A., Brooks, L., Nepelski, D., Ali, M., & Moro, R. (2017). Resource management in big data initiatives: Processes and dynamic capabilities. Journal of Business Research, 70, 328–337. https://doi.org/10.1016/j.jbusres.2016.08.006.
Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235. https://doi.org/10.1177/053901883022002003.
Chandler, J. D., & Wieland, H. (2010). Embedded Relationships: Implications for Networks, Innovation, and Ecosystems. Journal of Business Market Management, 4(4), 199–215. https://doi.org/10.1007/s12087-010-0041-5.
Chang, W., Park, J. E., & Chaiy, S. (2010). How does CRM technology transform into organizational performance? A mediating role of marketing capability. Journal of Business Research, 63(8), 849–855. https://doi.org/10.1016/j.jbusres.2009.07.003.
Chen, L., & Nath, R. (2018). Business analytics maturity of firms: an examination of the relationships between managerial perception of IT, business analytics maturity and success. Information Systems Management, 35(1), 62–77. https://doi.org/10.1080/10580530.2017.1416948.
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data To Big Impact. MIS Quarterly, 36(4), 1165–1188.
Chou, C., Chang, C. J., & Peng, J. (2016).Integrating XBRL data with textual information in Chinese : A semantic web approach. International Journal of Accounting Information Systems, 21, 32–46. https://doi.org/10.1016/j.accinf.2016.04.002.
Chuang, S.-H., & Lin, H.-N. (2013). The roles of infrastructure capability and customer orientation in enhancing customer-information quality in CRM systems: Empirical evidence from Taiwan. International Journal of Information Management, 33(2), 271–281. https://doi.org/10.1016/j.ijinfomgt.2012.12.003.
Chuang, S. H., & Lin, H. N. (2017). Performance implications of information-value offering in e-service systems: Examining the resource-based perspective and innovation strategy. Journal of Strategic Information Systems, 26(1), 22–38. https://doi.org/10.1016/j.jsis.2016.09.001.
Cohen, W. M., & Levinthal, D. A. (1990). Absorptive Capacity : A New Perspective on Learning and Innovation. Administrative Science Quarterly, 35(1), 128–152. https://doi.org/10.2307/2393553.
Conti, C. R., Parente, R., & de Vasconcelos, F. C. (2015).When distance does not matter: Implications for Latin American multinationals. Journal of Business Research, 69(6), 1980–1992. https://doi.org/10.1016/j.jbusres.2015.10.144.
Cooke, A. D. J., & Zubcsek, P. P. (2017). The Connected Consumer: Connected Devices and the Evolution of Customer Intelligence. Journal of the Association for Consumer Research, 2(2).
Côrte-Real, N., Oliveira, T., & Ruivo, P. (2017).Assessing business value of Big Data Analytics in European firms. Journal of Business Research, 70, 379–390. https://doi.org/10.1016/j.jbusres.2016.08.011.
Day, G. S. (2011).Closing the Marketing Capabilities Gap. Journal of Marketing, 75(4), 183–195. https://doi.org/10.1509/jmkg.75.4.183, G. S. (2014).An outside-in approach to resource-based theories. Journal of the Academy of Marketing Science, 42(1), 27–28. https://doi.org/10.1007/s11747-013-0348-3.
Freeman, L. C. (1978). Centrality in Social Networks Conceptual Clarification. Social Networks, 1, 215–239.
Germann, F., Lilien, G. L., Fiedler, L., & Kraus, M. (2014). Do Retailers Benefit from Deploying Customer Analytics? Journal of Retailing, 90(4), 587–593. https://doi.org/10.1016/j.jretai.2014.08.002.
Grover, P. (2017). Big Data Analytics : A Review on Theoretical Contributions and Tools Used in Literature. Global Journal of Flexible Systems Management, 18(3), 203–229. https://doi.org/10.1007/s40171-017-0159-3.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572. https://doi.org/10.1073/pnas.0507655102.
Hong, W., Chan, F. K. Y., Thong, J. Y. L., Chasalow, L. C., & Dhillon, G. (2013). A Framework and Guidelines for Context-Specific Theorizing in Information Systems Research. Information Systems Research, 7047(2004), 1–26.
Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2004).A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research. Journal of Consumer Research, 30(September 2003), 199–218. https://doi.org/10.1086/376806.
Jayachandran, S., Sharma, S., Kaufman, P., & Raman, P. (2005).The role of relational information processes and technology use in customer relationship management. Journal of Marketing, 69(4), 177–192. https://doi.org/10.1509/jmkg.2005.69.4.177.
Johnson, J. S., Friend, S. B., & Lee, H. S. (2017). Big Data Facilitation, Utilization, and Monetization: Exploring the 3Vs in a New Product Development Process. Journal of Product Innovation Management, 34(5), 640–658. https://doi.org/10.1111/jpim.12397.
Kessler, M. M. (1963). Bibliographic Coupling Between Scientific Papers. American Documentation, 14(1), 10–25.
Khanagha, S., Volberda, H., & Oshri, I. (2017). Customer Co-Creation and Exploration of Emerging Technologies: The Mediating Role of Managerial Attention and Initiatives. Long Range Planning, 50, 221–242. https://doi.org/10.1016/j.lrp.2015.12.019.
Kim, H. J., Jo, N. O., & Shin, K. S. (2016).Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction. Expert Systems with Applications, 59, 226–234. https://doi.org/10.1016/j.eswa.2016.04.027.
Kumar, A., Bezawada, R., Rishika, R., Janakiraman, R., & Kannan, P. K. (2016). From social to sale: The effects of firm-generated content in social media on customer behavior. Journal of Marketing, 80(1), 7–25. https://doi.org/10.1509/jm.14.0249.
MacKenzie, Podsakoff, & Podsakoff. (2011). Construct Measurement and Validation Procedures in MIS and Behavioral Research: Integrating New and Existing Techniques. MIS Quarterly, 35(2), 293. https://doi.org/10.2307/23044045.
MacRoberts, M. H., & MacRoberts, B. R. (2010). Problems of citation analysis: A study of uncited and seldom-cited influences. Journal of the American Society for Information Science and Technology, 61(1), 1–12. https://doi.org/10.1002/asi.21228.
Morgan, N. A., Zou, S., Vorhies, D. W., & Katsikeas, C. S. (2003). Experiential and Informational Knowledge, Architectural Marketing Capabilities, and the Adaptive Performance of Export Ventures: A Cross-National Study. Decision Sciences, 34(2), 287–321. https://doi.org/10.1111/1540-5915.02375.
Ozdemir, S., Kandemir, D., & Eng, T. (2017).The role of horizontal and vertical new product alliances in responsive and proactive market orientations and performance of industrial manufacturing firms. Industrial Marketing Management, 64(July), 25–35. https://doi.org/10.1016/j.indmarman.2017.03.006.
Pavlou, P. A., & Sawy, O. A. E. (2010). The “third hand”: IT-enabled competitive advantage in turbulence through improvisational capabilities. Information Systems Research, 21(3), 443–471. https://doi.org/10.1287/isre.1100.0280.
Popovič, A., Hackney, R., Coelho, P. S., & Jaklič, J. (2014). How information-sharing values influence the use of information systems: An investigation in the business intelligence systems context. The Journal of Strategic Information Systems, 23, 270–283. https://doi.org/10.1016/j.jsis.2014.08.003.
Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2016). The impact of big data analytics on firms ’ high value business performance. Information Systems Frontiers, 20(2), 209–222. https://doi.org/10.1007/s10796-016-9720-4.
Quevedo-Silva, F., Santos, E. B. A., Brandão, M. M., & Vils, L. (2016). ESTUDO BIBLIOMÉTRICO: ORIENTAÇÕES SOBRE SUA APLICAÇÃO. Revista Brasileira de Marketing, 15(2), 246–262. https://doi.org/10.5585/remark.v15i2.3274.
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/.
Rapp, A., Trainor, K. J., & Agnihotri, R. (2010). Performance implications of customer-linking capabilities: Examining the complementary role of customer orientation and CRM technology. Journal of Business Research, 63(11), 1229–1236. https://doi.org/10.1016/j.jbusres.2009.11.002.
Rosati, P., Cummins, M., Deeney, P., Gogolin, F., van der Werff, L., & Lynn, T. (2017). The effect of data breach announcements beyond the stock price: Empirical evidence on market activity. International Review of Financial Analysis, 49, 146–154. https://doi.org/10.1016/j.irfa.2017.01.001.
Sheng, J., Amankwah-amoah, J., & Wang, X. (2017).A multidisciplinary perspective of big data in management research. International Journal of Production Economics, 191(November 2016), 97–112. https://doi.org/10.1016/j.ijpe.2017.06.006.
Tan, K. H., & Zhan, Y. (2017). Improving new product development using big data: a case study of an electronics company. R and D Management, 47(4), 570–582. https://doi.org/10.1111/radm.12242.
Tan, K. H., Zhan, Y. Z., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, 165(July 2015), 223–233. https://doi.org/10.1016/j.ijpe.2014.12.034.
Teo, T. S. H., Nishant, R., & Koh, P. B. L. (2016). Do shareholders favor business analytics announcements? Journal of Strategic Information Systems, 25(4), 259–276. https://doi.org/10.1016/j.jsis.2016.05.001.
Trainor, K. J., Andzulis, J., Rapp, A., & Agnihotri, R. (2014). Social media technology usage and customer relationship performance: A capabilities-based examination of social CRM. Journal of Business Research, 67(6), 1201–1208. https://doi.org/10.1016/j.jbusres.2013.05.002.
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3.
Vogel, R., & Güttel, W. H. (2013). The dynamic capability view in strategic management: A bibliometric review. International Journal of Management Reviews, 15(4), 426–446. https://doi.org/10.1111/ijmr.12000.
Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356–365. https://doi.org/10.1016/j.jbusres.2016.08.009.
Wang, Y., & Byrd, T. A. (2017).Business analytics-enabled decision-making effectiveness through knowledge absorptive capacity in health care. Journal of Knowledge Management, 21(3), 517–539. https://doi.org/10.1108/JKM-08-2015-0301.
Wang, Y., & Hajli, N. (2017).Exploring the path to big data analytics success in healthcare. Journal of Business Research, 70, 287–299. https://doi.org/10.1016/j.jbusres.2016.08.002.
Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97–121. https://doi.org/10.1509/jm.15.0413.
Xu, Z., Frankwick, G. L., & Ramirez, E. (2016). Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. Journal of Business Research, 69(5), 1562–1566. https://doi.org/10.1016/j.jbusres.2015.10.017.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Revista Brasileira de Marketing – ReMark
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.