Analysis of the impact of social influence on the acceptance of mobile banking applications by consumers in Brazil
DOI:
https://doi.org/10.5585/remark.v22i4.23729Keywords:
Banking marketing, Consumer behavior, Mobile bankingAbstract
Objective: Analyze the impact of social influence on the acceptance of mobile banking applications.
Methodology: A descriptive survey was conducted with 371 users of banking applications over 18 years old. The analysis was performed using the Structural Equation Modeling - Partial Least Square (Smart-PLS 4.0).
Originality: This research is a pioneering effort to apply TAM with the inclusion of social influence, in the COVID-19 pandemic context in Brazil, to analyze the acceptance of mobile banking.
Results: The conceptual model has good explanatory power. The research provided empirical evidences that mobile banking adoption is impacted by social influence. This work reinforces the premise that the subject's intention to adopt mobile banking services is influenced by the people who matter to them. In this way, marketing actions/campaigns must consider these reference groups in their strategies in order to promote the technology in question.
Contributions: The conceptual model, empirically adjusted and with the corresponding scales, can be used as guidance to application developers and banking marketing management. Due to the lack of empirical researches/studies on the subject in the Brazilian context and the growing use of banking applications, this study expands existing knowledge and provides empirical support for further studies.
Downloads
References
Ahadzadeh, A. S., Sharif, S. P., Ong, F. S., & Khong, K. W. (2015). Integrating Health Belief Model and Technology Acceptance Model: An Investigation of Health-Related Internet Use. Journal of Medical Internet Research, 17(2), e45. 10.2196/jmir.3564
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Williams, M. D. (2016). Consumer adoption of mobile banking in Jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy. Journal of Enterprise Information Management, 29(1), 118-139. 10.1108/JEIM-04-2015-0035
Al-Somali, S. A., Gholami, R., & Clegg, B. (2009). An investigation into the acceptance of online banking in Saudi Arabia. Technovation, 29(2), 130-141. https://doi.org/10.1016/j.technovation.2008.07.004
App Annie & Liftoff. (2021). Mobile Finance Apps Report - Banking on the future of fintech. APP ANNIE. Retrieved Abril 18, 2021, from http://bit.ly/3JjrttP
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Patil, P., & Dwivedi, Y. K. (2019). An integrated model for m-banking adoption in Saudi Arabia. International Journal of Bank Marketing, 37(2), 452-478, from http://bit.ly/3jaWwNG
Bido, D. de S., & Silva, D. da (2019). SmartPLS 3: especificação, estimação, avaliação e relato. Administração: Ensino e Pesquisa, 20(2), 488-536. https://doi.org/10.13058/raep.2019.v20n2.1545
Bradley, J. (2012). If We Build It They Will Come? The Technology Acceptance Model. Information Systems Theory. Integrated Series in Information Systems, 1(28), 19-36. https://doi.org/10.1007/978-1-4419-6108-2_2
Bryan, A. D., Aiken, L. S., & West, S. G. (1997). Young Women's Condom Use: The Influence of Acceptance of Sexuality, Control Over the Sexual Encounter, and Perceived Susceptibility to Common STDs. Health Psychology, 16(5), 468-479. 0278-6133/97/S3.00
Callow, M. A., Callow, D. D., & Smith, C. (2020). Older Adults’ Intention to Socially Isolate Once covid-19 Stay-at-Home Orders Are Replaced With “Safer-at-Home” Public Health Advisories: A Survey of Respondents in Maryland. Journal of Applied Gerontology, 39(11), 1175-1183. https://doi.org/10.1177/0733464820944704
Carpenter, C. J. (2010). A Meta-Analysis of the Effectiveness of Health Belief Model Variables in Predicting Behavior. Health Communication, 25(8), 661-669. https://doi.org/10.1080/10410236.2010.521906
Chau, P. Y., & Lai, V. S. (2003). An Empirical Investigation of the Determinants of User Acceptance of Internet Banking. Journal of Organizational Computing and Electronic Commerce, 13(2), 123-145. https://doi.org/10.1207/S15327744JOCE1302_3
Chawla, D., & Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India – An empirical study. International Journal of Bank Marketing, 37(2), 1590-1618. https://doi.org/10.1108/IJBM-09-2018-0256
Chin, W. W. The partial least squares approach for structural equation modeling. In Marcoulides, G.A. (Ed.). Modern methods for business research. London: Lawrence Erlbaum Associates, p. 295-236, 1998.
Chong, A. Y.-L., Darmawan, N., Ooi, K.-B., & Lin, B. (2010a). Adoption of 3G services among Malaysian consumers: an empirical analysis. International Journal of Mobile Communications, 8(2), 129-149. 10.1504/IJMC.2010.031444
Chong, A. Y.-L., Ooi, K.-B., Lin, B., & Tan, B.-I. (2010b). Online banking adoption: an empirical analysis. International Journal of Bank Marketing, 28(4), 267-287. 10.1108/02652321011054963
Davis, F. D. (1986). A TECHNOLOGY ACCEPTANCE MODEL FOR EMPIRICALLY TESTING NEW END-USER INFORMATION SYSTEMS: THEORY AND RESULTS. Sloan School of Management, M.I.T. in December.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Dela Coleta, M. F. (1999). o modelo de crenças em saúde (HBM): uma análise de sua contribuição à psicologia da saúde. Temas em Psicologia, 7(2), 175-182. http://pepsic.bvsalud.org/pdf/tp/v7n2/v7n2a07.pdf
Devellis, R. F. (2003). Scale development : theory and applications. Thousand Oaks : SAGE Publications.
Dou, K., Yu, P., Deng, N., Liu, F., Guan, Y., Li, Z., Ji, Y., Du, N., Lu, X., & Duan, H. (2017). Patients’ Acceptance of Smartphone Health Technology for Chronic Disease Management: A Theoretical Model and Empirical Test. JMIR Mhealth Uhealth, 5(12), e177. 10.2196/mhealth.7886
Dror, A. A., Eisenbach, N., Taiber, S., Morozov, N. G., Mizrachi, M., Zigron, A., Srouji, S., & Sela, E. (2020). Vaccine hesitancy: the next challenge in the fight against covid-19. European Journal of Epidemiology, 35, 775–779. https://doi.org/10.1007/s10654-020-00671-y
Elhajjar, S., & Ouaida, F. (2020). An analysis of factors affecting mobile banking adoption. International Journal of Bank Marketing, 38(2), 352-367. https://doi.org/10.1108/IJBM-02-2019-0055
Farah, M. F., Hasni, M. S., & Abbas, A. K. (2018). Mobile-banking adoption: empirical evidence from the banking sector in Pakistan. International Journal of Bank Marketing, 36(7), 1386-1413. 10.1108/IJBM-10-2017-0215
FEBRABAN - Federação Brasileira de Bancos. (2020, dezembro). Destaques de 2020. Expectativas para 2021. FEBRABAN. Retrieved Abril 18, 2021, from http://bit.ly/3HapB44
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (9th ed.). Hampshire: Cengage Learning.
Hair Jr., J. F., Celsi, M. W., Ortinau, D. J., & Bush, R. P. (2014b). Fundamentos de Pesquisa de Marketing (3ª ed.). Porto Alegre: AMGH.
Hair JR., J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014a). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications.
Icek, A., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin, 84(5), 888–918. https://doi.org/10.1037/0033-2909.84.5.888
Janz, N. K., & Becker, M. H. (1984, Março 1). The Health Belief Model: A Decade Later. Health Education Quarterly, 11(1), 1-47. 10.1177 / 109019818401100101
Johns Hopkins University (JHU), covid-19 Dashboard by the Center for Systems Science and Engineering (CSSE). (2022, April 17). Coronavírus covid-19 (2019-nCoV). Retrieved January 21, 2023, from http://bit.ly/40if13I
Jones, C. L., Jensen, J. D., Scherr, C. L., Brown, N. R., Christy, K., & Weaver, J. (2015). The Health Belief Model as an Explanatory Framework in Communication Research: Exploring Parallel, Serial, and Moderated Mediation. Health Communication, 30(6), 566-576. https://doi.org/10.1080/10410236.2013.873363
Kim, J., & Park, H.-A. (2012). Development of a Health Information Technology Acceptance Model Using Consumers’ Health Behavior Intention. JOURNAL OF MEDICAL INTERNET RESEARCH, 14(5), 1-14. 10.2196/jmir.2143
Koenig-Lewis, N., Palmer, A., & Moll, A. (2010). Predicting young consumers' take up of mobile banking services. International Journal of Bank Marketing, 28(5), 410-432. https://doi-org.ez87.periodicos.capes.gov.br/10.1108/02652321011064917
Koksal, M. H. (2016). The intentions of Lebanese consumers to adopt mobile banking. International Journal of Bank Marketing, 34(3), 327-346. 10.1108/IJBM-03-2015-0025
Lin, S.-P. (2011). Determinants of adoption of Mobile Healthcare Service. International Journal of Mobile Communications (IJMC), 9(3), 298-315. 10.1504 / IJMC.2011.040608
López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45(6), 359-364. https://doi.org/10.1016/j.im.2008.05.001
Luarn, P., & Lin, H.-H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21, 873–891. 10.1016/j.chb.2004.03.003
Makanyeza, C. (2017). Determinants of consumers’ intention to adopt mobile banking services in Zimbabwe. International Journal of Bank Marketing, 35(6), 997-1017. 10.1108/IJBM-07-2016-0099
Mobile Time & Opinion Box. (2020, Maio). Panorama Mobile Time/Opinion Box. Opinion Box. Retrieved Abril 18, 2021, from http://bit.ly/3kLGqe1
Mohallem, D. F., Tavares, M., Silva, P. L., Guimarães, E. C., & Freitas, R. F. (2008, Abril). Avaliação do coeficiente de variação como medida da precisão em experimentos com frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60(2), 449-453. http://dx.doi.org/10.1590/s0102-09352008000200026
Mortimer, G., Neale, L., Hasan, S. F. E., & Dunphy, B. (2015). Investigating the factors influencing the adoption of m-banking: a cross cultural study. International Journal of Bank Marketing, 33(4), 545-570. 10.1108/IJBM-07-2014-0100
Mousa, A. H., Mousa, S. H., Aljshamee, M., & Nasir, I. S. (2021). Determinants of customer acceptance of e-banking in Iraq using technology acceptance model. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 19(2), 421-431. 10.12928/TELKOMNIKA.v19i2.16068
Munoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2017). Determinants of intention to use the mobile banking apps: An extension of the classic TAM model. SPANISH JOURNAL OF MARKETING - ESIC, 21(1), 25-38. https://doi.org/10.1016/j.sjme.2016.12.001
Park, J., Ahn, J., Thavisay, T., & Ren, T. (2019). Examining the role of anxiety and social influence in multi-benefits of mobile payment service. Journal of Retailing and Consumer Services, 47, 140-149. https://doi.org/10.1016/j.jretconser.2018.11.015
Patel, K. J., & Patel, H. J. (2018). Adoption of internet banking services in Gujarat An extension of TAM with perceived security and social influence. International Journal of Bank Marketing, 36(1), 47-169. 10.1108/IJBM-08-2016-0104
Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: an extension of the technology acceptance model. Internet Research, 14(3), 224–235. 10.1108/10662240410542652
Rana, N. P., Dwivedi, Y. K., & Williams, M. D. (2013). Evaluating alternative theoretical models for examining citizen centric adoption of e-government. Transforming Government: People, Process and Policy., 7(1), 27-49. 10.1108/17506161311308151
Reiter, P. L., Pennell, M. L., & Katz, M. L. (2020). Acceptability of a covid-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine, 38(42), 6500-6507. https://doi.org/10.1016/j.vaccine.2020.08.043
Ringle, C. M., Silva, D. D., & Bido, D. d. S. (2014, Maio 01). Structural Equation Modeling with the Smartpls. Revista Brasileira de Marketing, 13(02), 56-73. http://dx.doi.org/10.5585/remark.v13i2.2717
Rosenstock, I. M. (1974). Historical Origins of the Health Belief Model. Health Education Monographs, 2(4), 328-335. 10.1177 / 109019817400200403
Shaikh, A. A., & Karjaluoto, H. (2015, February). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129-142. https://doi.org/10.1016/j.tele.2014.05.003
Sharma, S. K., Govindaluri, S. M., Al-Muharrami, S., & Tarhini, A. (2017). A multi-analytical model for mobile banking adoption: a developing country perspective. Review of International Business and Strategy, 27(1), 133-148. 10.1108/RIBS-11-2016-0074
Sreelakshmi, C. C., & Prathap, S. K. (2020). Continuance adoption of mobile based payments in covid-19 context: an integrated framework of health belief model and expectation confirmation model. International Journal of Pervasive Computing and Communications, 16(4), 351-369. 10.1108/IJPCC-06-2020-0069
Sudarsono, H., Nugrohowati, R. N. I., & Tumewang, Y. K. (2020). The Effect of covid-19 Pandemic on the Adoption of Internet Banking in Indonesia: Islamic Bank and Conventional Bank. The Journal of Asian Finance, Economics and Business, 7(11), 789-800. doi:10.13106/jafeb.2020.vol7.no11.789
Sukendro, S., Habibi, A., Khaeruddin, K., Indrayana, B., Syahruddin, S., Makadada, F. A., & Hakim, H. (2020). Using an extended Technology Acceptance Model to understand students’ use of e-learning during covid-19: Indonesian sport science education context. Heliyon, 6(11), 1-9. https://doi.org/10.1016/j.heliyon.2020.e05410.
Teo, T. (2011). Technology acceptance research. In educationIn: Technology Acceptance in Education. SensePublishers. https://doi.org/10.1007/978-94-6091-487-4_1
Tobbin, P. (2012). Towards a model of adoption in mobile banking by the unbanked: a qualitative study. info, 14(5), 74-88, from http://bit.ly/3HzG9ne
Tsai, C.-H. (2014). The Adoption of a Telehealth System: The Integration of Extended Technology Acceptance Model and Health Belief Model. Journal of Medical Imaging and Health Informatics, 4(3), 448-455(8). https://doi.org/10.1166/jmihi.2014.1278
Wessels, L., & Drennan, J. (2010). An investigation of consumer acceptance of M‐banking. International Journal of Bank Marketing,, 28(7), 547-568. https://doi.org/10.1108/02652321011085194
Zhao, Y., & Bacao, F. (2021). How Does the Pandemic Facilitate Mobile Payment? An Investigation on Users’ Perspective under the covid-19 Pandemic. International Journal of Environmental Research and Public Health, 18(3), 1016-1038. https:// doi.org/10.3390/ijerph18031016
Zhou, T., Lu, Y., & Wang, B. (2010, July). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767. https://doi.org/10.1016/j.chb.2010.01.013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Maria José Isac, Sheila Farias Alves Garcia, Dirceu da Silva

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
10.24507/icicel.19.04.467
- Abstract 493
- PDF (Português (Brasil)) 383