Análise do impacto da influência social na aceitação de aplicativos bancários móveis por consumidores no Brasil
DOI:
https://doi.org/10.5585/remark.v22i4.23729Palavras-chave:
Marketing de serviços bancários, Comportamento do consumidor, Mobile BankingResumo
Objetivo: Analisar o impacto da influência social na aceitação de aplicativos bancários móveis.
Metodologia: Foi realizada uma pesquisa descritiva do tipo survey, com 371 usuários de aplicativos bancários, maiores de 18 anos. A análise foi realizada por meio de Equação Estrutural - Mínimo Quadrado Parcial (Smart-PLS 4.0).
Originalidade: Esta pesquisa é um esforço pioneiro de aplicação do TAM com a inclusão da influência social, no contexto da pandemia de COVID-19 no Brasil, para analisar a aceitação de mobile banking.
Resultados: O modelo conceitual apresenta bom poder explicativo. A pesquisa trouxe evidências empíricas de que a adoção do mobile banking é impactada pela influência social. Este trabalho reforça a premissa de que a intenção do sujeito de adotar serviços bancários móveis é influenciada pelas pessoas importantes para si. Dessa forma, os esforços de marketing devem levar em consideração esses grupos de referência em suas estratégias, a fim promover a tecnologia em questão.
Contribuições: O Modelo Conceitual, ajustado empiricamente e com as escalas correspondentes, serve de orientação aos desenvolvedores de aplicativos e à gestão de marketing bancário. Devido à escassez de trabalhos empíricos sobre o tema no contexto brasileiro e a crescente utilização de aplicativos de bancos, este estudo amplia o conhecimento existente e fornece suporte empírico para estudos posteriores.
Downloads
Referências
Ahadzadeh, A. S., Sharif, S. P., Ong, F. S., & Khong, K. W. (2015). Integrating Health Belief Model and Technology Acceptance Model: An Investigation of Health-Related Internet Use. Journal of Medical Internet Research, 17(2), e45. 10.2196/jmir.3564
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179-211.
Alalwan, A. A., Dwivedi, Y. K., Rana, N. P., & Williams, M. D. (2016). Consumer adoption of mobile banking in Jordan: Examining the role of usefulness, ease of use, perceived risk and self-efficacy. Journal of Enterprise Information Management, 29(1), 118-139. 10.1108/JEIM-04-2015-0035
Al-Somali, S. A., Gholami, R., & Clegg, B. (2009). An investigation into the acceptance of online banking in Saudi Arabia. Technovation, 29(2), 130-141. https://doi.org/10.1016/j.technovation.2008.07.004
App Annie & Liftoff. (2021). Mobile Finance Apps Report - Banking on the future of fintech. APP ANNIE. Retrieved Abril 18, 2021, from http://bit.ly/3JjrttP
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Patil, P., & Dwivedi, Y. K. (2019). An integrated model for m-banking adoption in Saudi Arabia. International Journal of Bank Marketing, 37(2), 452-478, from http://bit.ly/3jaWwNG
Bido, D. de S., & Silva, D. da (2019). SmartPLS 3: especificação, estimação, avaliação e relato. Administração: Ensino e Pesquisa, 20(2), 488-536. https://doi.org/10.13058/raep.2019.v20n2.1545
Bradley, J. (2012). If We Build It They Will Come? The Technology Acceptance Model. Information Systems Theory. Integrated Series in Information Systems, 1(28), 19-36. https://doi.org/10.1007/978-1-4419-6108-2_2
Bryan, A. D., Aiken, L. S., & West, S. G. (1997). Young Women's Condom Use: The Influence of Acceptance of Sexuality, Control Over the Sexual Encounter, and Perceived Susceptibility to Common STDs. Health Psychology, 16(5), 468-479. 0278-6133/97/S3.00
Callow, M. A., Callow, D. D., & Smith, C. (2020). Older Adults’ Intention to Socially Isolate Once covid-19 Stay-at-Home Orders Are Replaced With “Safer-at-Home” Public Health Advisories: A Survey of Respondents in Maryland. Journal of Applied Gerontology, 39(11), 1175-1183. https://doi.org/10.1177/0733464820944704
Carpenter, C. J. (2010). A Meta-Analysis of the Effectiveness of Health Belief Model Variables in Predicting Behavior. Health Communication, 25(8), 661-669. https://doi.org/10.1080/10410236.2010.521906
Chau, P. Y., & Lai, V. S. (2003). An Empirical Investigation of the Determinants of User Acceptance of Internet Banking. Journal of Organizational Computing and Electronic Commerce, 13(2), 123-145. https://doi.org/10.1207/S15327744JOCE1302_3
Chawla, D., & Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India – An empirical study. International Journal of Bank Marketing, 37(2), 1590-1618. https://doi.org/10.1108/IJBM-09-2018-0256
Chin, W. W. The partial least squares approach for structural equation modeling. In Marcoulides, G.A. (Ed.). Modern methods for business research. London: Lawrence Erlbaum Associates, p. 295-236, 1998.
Chong, A. Y.-L., Darmawan, N., Ooi, K.-B., & Lin, B. (2010a). Adoption of 3G services among Malaysian consumers: an empirical analysis. International Journal of Mobile Communications, 8(2), 129-149. 10.1504/IJMC.2010.031444
Chong, A. Y.-L., Ooi, K.-B., Lin, B., & Tan, B.-I. (2010b). Online banking adoption: an empirical analysis. International Journal of Bank Marketing, 28(4), 267-287. 10.1108/02652321011054963
Davis, F. D. (1986). A TECHNOLOGY ACCEPTANCE MODEL FOR EMPIRICALLY TESTING NEW END-USER INFORMATION SYSTEMS: THEORY AND RESULTS. Sloan School of Management, M.I.T. in December.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Dela Coleta, M. F. (1999). o modelo de crenças em saúde (HBM): uma análise de sua contribuição à psicologia da saúde. Temas em Psicologia, 7(2), 175-182. http://pepsic.bvsalud.org/pdf/tp/v7n2/v7n2a07.pdf
Devellis, R. F. (2003). Scale development : theory and applications. Thousand Oaks : SAGE Publications.
Dou, K., Yu, P., Deng, N., Liu, F., Guan, Y., Li, Z., Ji, Y., Du, N., Lu, X., & Duan, H. (2017). Patients’ Acceptance of Smartphone Health Technology for Chronic Disease Management: A Theoretical Model and Empirical Test. JMIR Mhealth Uhealth, 5(12), e177. 10.2196/mhealth.7886
Dror, A. A., Eisenbach, N., Taiber, S., Morozov, N. G., Mizrachi, M., Zigron, A., Srouji, S., & Sela, E. (2020). Vaccine hesitancy: the next challenge in the fight against covid-19. European Journal of Epidemiology, 35, 775–779. https://doi.org/10.1007/s10654-020-00671-y
Elhajjar, S., & Ouaida, F. (2020). An analysis of factors affecting mobile banking adoption. International Journal of Bank Marketing, 38(2), 352-367. https://doi.org/10.1108/IJBM-02-2019-0055
Farah, M. F., Hasni, M. S., & Abbas, A. K. (2018). Mobile-banking adoption: empirical evidence from the banking sector in Pakistan. International Journal of Bank Marketing, 36(7), 1386-1413. 10.1108/IJBM-10-2017-0215
FEBRABAN - Federação Brasileira de Bancos. (2020, dezembro). Destaques de 2020. Expectativas para 2021. FEBRABAN. Retrieved Abril 18, 2021, from http://bit.ly/3HapB44
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (9th ed.). Hampshire: Cengage Learning.
Hair Jr., J. F., Celsi, M. W., Ortinau, D. J., & Bush, R. P. (2014b). Fundamentos de Pesquisa de Marketing (3ª ed.). Porto Alegre: AMGH.
Hair JR., J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014a). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). SAGE Publications.
Icek, A., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological Bulletin, 84(5), 888–918. https://doi.org/10.1037/0033-2909.84.5.888
Janz, N. K., & Becker, M. H. (1984, Março 1). The Health Belief Model: A Decade Later. Health Education Quarterly, 11(1), 1-47. 10.1177 / 109019818401100101
Johns Hopkins University (JHU), covid-19 Dashboard by the Center for Systems Science and Engineering (CSSE). (2022, April 17). Coronavírus covid-19 (2019-nCoV). Retrieved January 21, 2023, from http://bit.ly/40if13I
Jones, C. L., Jensen, J. D., Scherr, C. L., Brown, N. R., Christy, K., & Weaver, J. (2015). The Health Belief Model as an Explanatory Framework in Communication Research: Exploring Parallel, Serial, and Moderated Mediation. Health Communication, 30(6), 566-576. https://doi.org/10.1080/10410236.2013.873363
Kim, J., & Park, H.-A. (2012). Development of a Health Information Technology Acceptance Model Using Consumers’ Health Behavior Intention. JOURNAL OF MEDICAL INTERNET RESEARCH, 14(5), 1-14. 10.2196/jmir.2143
Koenig-Lewis, N., Palmer, A., & Moll, A. (2010). Predicting young consumers' take up of mobile banking services. International Journal of Bank Marketing, 28(5), 410-432. https://doi-org.ez87.periodicos.capes.gov.br/10.1108/02652321011064917
Koksal, M. H. (2016). The intentions of Lebanese consumers to adopt mobile banking. International Journal of Bank Marketing, 34(3), 327-346. 10.1108/IJBM-03-2015-0025
Lin, S.-P. (2011). Determinants of adoption of Mobile Healthcare Service. International Journal of Mobile Communications (IJMC), 9(3), 298-315. 10.1504 / IJMC.2011.040608
López-Nicolás, C., Molina-Castillo, F. J., & Bouwman, H. (2008). An assessment of advanced mobile services acceptance: Contributions from TAM and diffusion theory models. Information & Management, 45(6), 359-364. https://doi.org/10.1016/j.im.2008.05.001
Luarn, P., & Lin, H.-H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21, 873–891. 10.1016/j.chb.2004.03.003
Makanyeza, C. (2017). Determinants of consumers’ intention to adopt mobile banking services in Zimbabwe. International Journal of Bank Marketing, 35(6), 997-1017. 10.1108/IJBM-07-2016-0099
Mobile Time & Opinion Box. (2020, Maio). Panorama Mobile Time/Opinion Box. Opinion Box. Retrieved Abril 18, 2021, from http://bit.ly/3kLGqe1
Mohallem, D. F., Tavares, M., Silva, P. L., Guimarães, E. C., & Freitas, R. F. (2008, Abril). Avaliação do coeficiente de variação como medida da precisão em experimentos com frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60(2), 449-453. http://dx.doi.org/10.1590/s0102-09352008000200026
Mortimer, G., Neale, L., Hasan, S. F. E., & Dunphy, B. (2015). Investigating the factors influencing the adoption of m-banking: a cross cultural study. International Journal of Bank Marketing, 33(4), 545-570. 10.1108/IJBM-07-2014-0100
Mousa, A. H., Mousa, S. H., Aljshamee, M., & Nasir, I. S. (2021). Determinants of customer acceptance of e-banking in Iraq using technology acceptance model. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 19(2), 421-431. 10.12928/TELKOMNIKA.v19i2.16068
Munoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2017). Determinants of intention to use the mobile banking apps: An extension of the classic TAM model. SPANISH JOURNAL OF MARKETING - ESIC, 21(1), 25-38. https://doi.org/10.1016/j.sjme.2016.12.001
Park, J., Ahn, J., Thavisay, T., & Ren, T. (2019). Examining the role of anxiety and social influence in multi-benefits of mobile payment service. Journal of Retailing and Consumer Services, 47, 140-149. https://doi.org/10.1016/j.jretconser.2018.11.015
Patel, K. J., & Patel, H. J. (2018). Adoption of internet banking services in Gujarat An extension of TAM with perceived security and social influence. International Journal of Bank Marketing, 36(1), 47-169. 10.1108/IJBM-08-2016-0104
Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: an extension of the technology acceptance model. Internet Research, 14(3), 224–235. 10.1108/10662240410542652
Rana, N. P., Dwivedi, Y. K., & Williams, M. D. (2013). Evaluating alternative theoretical models for examining citizen centric adoption of e-government. Transforming Government: People, Process and Policy., 7(1), 27-49. 10.1108/17506161311308151
Reiter, P. L., Pennell, M. L., & Katz, M. L. (2020). Acceptability of a covid-19 vaccine among adults in the United States: How many people would get vaccinated? Vaccine, 38(42), 6500-6507. https://doi.org/10.1016/j.vaccine.2020.08.043
Ringle, C. M., Silva, D. D., & Bido, D. d. S. (2014, Maio 01). Structural Equation Modeling with the Smartpls. Revista Brasileira de Marketing, 13(02), 56-73. http://dx.doi.org/10.5585/remark.v13i2.2717
Rosenstock, I. M. (1974). Historical Origins of the Health Belief Model. Health Education Monographs, 2(4), 328-335. 10.1177 / 109019817400200403
Shaikh, A. A., & Karjaluoto, H. (2015, February). Mobile banking adoption: A literature review. Telematics and Informatics, 32(1), 129-142. https://doi.org/10.1016/j.tele.2014.05.003
Sharma, S. K., Govindaluri, S. M., Al-Muharrami, S., & Tarhini, A. (2017). A multi-analytical model for mobile banking adoption: a developing country perspective. Review of International Business and Strategy, 27(1), 133-148. 10.1108/RIBS-11-2016-0074
Sreelakshmi, C. C., & Prathap, S. K. (2020). Continuance adoption of mobile based payments in covid-19 context: an integrated framework of health belief model and expectation confirmation model. International Journal of Pervasive Computing and Communications, 16(4), 351-369. 10.1108/IJPCC-06-2020-0069
Sudarsono, H., Nugrohowati, R. N. I., & Tumewang, Y. K. (2020). The Effect of covid-19 Pandemic on the Adoption of Internet Banking in Indonesia: Islamic Bank and Conventional Bank. The Journal of Asian Finance, Economics and Business, 7(11), 789-800. doi:10.13106/jafeb.2020.vol7.no11.789
Sukendro, S., Habibi, A., Khaeruddin, K., Indrayana, B., Syahruddin, S., Makadada, F. A., & Hakim, H. (2020). Using an extended Technology Acceptance Model to understand students’ use of e-learning during covid-19: Indonesian sport science education context. Heliyon, 6(11), 1-9. https://doi.org/10.1016/j.heliyon.2020.e05410.
Teo, T. (2011). Technology acceptance research. In educationIn: Technology Acceptance in Education. SensePublishers. https://doi.org/10.1007/978-94-6091-487-4_1
Tobbin, P. (2012). Towards a model of adoption in mobile banking by the unbanked: a qualitative study. info, 14(5), 74-88, from http://bit.ly/3HzG9ne
Tsai, C.-H. (2014). The Adoption of a Telehealth System: The Integration of Extended Technology Acceptance Model and Health Belief Model. Journal of Medical Imaging and Health Informatics, 4(3), 448-455(8). https://doi.org/10.1166/jmihi.2014.1278
Wessels, L., & Drennan, J. (2010). An investigation of consumer acceptance of M‐banking. International Journal of Bank Marketing,, 28(7), 547-568. https://doi.org/10.1108/02652321011085194
Zhao, Y., & Bacao, F. (2021). How Does the Pandemic Facilitate Mobile Payment? An Investigation on Users’ Perspective under the covid-19 Pandemic. International Journal of Environmental Research and Public Health, 18(3), 1016-1038. https:// doi.org/10.3390/ijerph18031016
Zhou, T., Lu, Y., & Wang, B. (2010, July). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767. https://doi.org/10.1016/j.chb.2010.01.013
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 ReMark - Revista Brasileira de Marketing
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.