Use of iramuteq for content analysis based on descending hierarchical classification and correspondence factor analysis
DOI:
https://doi.org/10.5585/remark.v21i5.21290Keywords:
Content analysis, descending hierarchical classification, correspondence factorial analysis, patents, innovation management, digital transformation, IramuteqAbstract
Objective: To present content analysis based on descending hierarchical classification and factorial correspondence analysis as complementary and sequential techniques, with possible application in the area of innovation management.
Method: Content analysis based on Computer-Aided Text Analysis (CATA) techniques using the IRAMUTEQ software
Originality/Relevance: The research paradigm usually influences the researcher's own knowledge bases and domain methodologies. Manual text analysis can eventually be attributed to the interpretivist paradigm and CATA techniques can eventually be attributed to the post-positivist paradigm, however, there seems to be no reason to make this distinction.
Results: Presentation of a framework that demonstrates the technological choices of the most innovative companies in the world (Google, Apple and Amazon), common and different choices, among them.
Theoretical/methodological contributions: Development of a method for analyzing the technological choices of the most innovative companies in the world, applying content analysis based on descending hierarchical classification and factorial analysis of correspondence in a sequential and complementary way.
Social / management contributions: Decision-making for innovation management can be revised according to the technological choices presented. Competitive advantage has distinctiveness by nature. We demonstrate that it is not a problem to master the same technologies, that is, companies can have similar technological domains and still have different marketing approaches.
Downloads
References
Ang, C. (2021, julho 19). Ranked: The Most Innovative Companies in 2021. Visual Capitalist. https://www.visualcapitalist.com/ranked-the-most-innovative-companies-in-2021/
Bardin, L. (1977). Content analysis. São Paulo: Livraria Martins Fontes.
Benzécri, J.-P. (1973). L’analyse des données, vol. 2. Paris: Dunod.
Camargo, B. V., & Justo, A. M. (2013). IRAMUTEQ: Um software gratuito para análisede dados textuais. Temas em Psicologia, 21(2), 513–518. https://doi.org/10.9788/TP2013.2-16
Campion, E. D., & Campion, M. A. (2020). Using Computer-assisted Text Analysis (CATA) to Inform Employment Decisions: Approaches, Software, and Findings. Research in Personnel and Human Resources Management.
Cibois, P., & Jambu, M. (1981). Analyse des données et sociologie. L’Année sociologique (1940/1948-), 31, 333–348.
Hair, J. F. (2009). Multivariate data analysis.
Hirschfeld, H. O. (1935). A Connection between Correlation and Contingency. Mathematical Proceedings of the Cambridge Philosophical Society, 31(4), 520–524. https://doi.org/10.1017/S0305004100013517
Mazieri, M. R. (2016). Patentes e inovação frugal em uma perspectiva contributiva. http://bibliotecatede.uninove.br/handle/tede/1600
Miraballes, M., & Gámbaro, A. (2018). Influence of Images on the Evaluation of Jams Using Conjoint Analysis Combined with Check-All-That-Apply (CATA) Questions. Journal of food science, 83(1), 167–174.
Miraballes, M., Hodos, N., & Gámbaro, A. (2018). Application of a pivot profile variant using CATA questions in the development of a whey-based fermented beverage. Beverages, 4(1), 11.
Ratinaud, P., & Marchand, P. (2012). Application de la méthode ALCESTE à de" gros" corpus et stabilité des" mondes lexicaux": Analyse du" Cable-Gate" avec IraMuTeQ. Actes des 11e Journées internationales d’Analyse statistique des Données Textuelles. JADT 2012.
Reinert, M. (1990a). Une méthode de classification des énoncés d’un corpus présentée à l’aide d’une application. Les cahiers de l’analyse des données, 15(1), 21–36.
Reinert, M. (1990b). Alceste une méthodologie d’analyse des données textuelles et une application: Aurelia De Gerard De Nerval. Bulletin de Méthodologie Sociologique, 26(1), 24–54. https://doi.org/10.1177/075910639002600103
Reinert, M. (1995). Quelques aspects de choix des unités d’analyse et de leur contrôle dans la méthode Alceste. JADT1995, 1, 27–34.
Reinert, M. (2007). Postures énonciatives et mondes lexicaux stabilisés en analyse statistique de discours. Langage et société, 3, 189–202.
Short, J. C., Broberg, J. C., Cogliser, C. C., & Brigham, K. H. (2010). Construct validation using computer-aided text analysis (CATA) an illustration using entrepreneurial orientation. Organizational Research Methods, 13(2), 320–347.
Tidd, J., & Bessant, J. (2015). Gestão da inovação-5. Bookman Editora.
van Meter, K. M., Mounier, L., Chartron, G., & Reinert, M. (1991). Multimethod Analysis: Official Biographies of Members of the Central Committee of the Soviet Union Communist Party. Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique, 33(1), 20–37. https://doi.org/10.1177/075910639103300102
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Brazilian Journal of Marketing - BJM
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Abstract 1007
- PDF 1001