Impact of exercise training on inflammatory and redox renal profiles in metabolic syndrome development

Authors

DOI:

https://doi.org/10.5585/22.2023.23408

Keywords:

Metabolic syndrome, Animal models, Oxidative stress, Hypertension, Renal tissue, Physical exercise

Abstract

 

Objective: To investigate the effect of aerobic exercise training (ET) on renal inflammatory and oxidative stress profiles in an experimental model of metabolic syndrome (MS) development.
Methods: Wistar and spontaneously hypertensive (SHR) rats were distributed into control (C), hypertensive (H), hypertensive fructose (HF) and trained hypertensive fructose (THF) groups. The HF and THF groups were submitted to fructose overload (10%, 60 days) since weaning. The ET was performed on a treadmill for 60 days (5 days/week, 40-60% maximum speed of the exercise test).
Results: The ET promoted reduction in renal superoxide anion, hydrogen peroxide and oxidized proteins compared to the HF group. In addition, the THF group showed an increase in FRAP and in nitrites compared to the H and HF groups. In the inflammatory profile, ET provided an increase in IL-10 and a reduction in TNFα/IL-10 ratio.
Conclusion: The results showed that aerobic training attenuated oxidative stress and favored an anti-inflammatory profile in renal tissue in a model of MS development.

Downloads

Download data is not yet available.

References

Barroso WKS, Rodrigues CIS, Bortolotto LA, Mota-Gomes MA, Brandão AA, Feitosa AD de M, et al. Diretrizes Brasileiras de Hipertensão Arterial – 2020. Arq Bras Cardiol. 2021;116(3):516–658. https://doi.org/10.36660/abc.20201238

Nilson EAF, Andrade R da CS, de Brito DA, de Oliveira ML. [Costs attributable to obesity, hypertension, and diabetes in the Unified Health System, Brazil, 2018Costos atribuibles a la obesidad, la hipertensión y la diabetes en el Sistema Único de Salud de Brasil, 2018]. Rev Panam Salud Publica Pan Am J Public Health. 2020;44:e32. https://doi.org/10.26633/RPSP.2020.32

Précoma DB, Oliveira GMM de, Simão AF, Dutra OP, Coelho OR, Izar MC de O, et al. Atualização da Diretriz de Prevenção Cardiovascular da Sociedade Brasileira de Cardiologia – 2019. Arq Bras Cardiol. 2019;113(4):787–891. https://doi.org/10.5935/abc.20190204

Bernardes N. Mecanismos associados ao desenvolvimento das complicações cardiometabólicas em SHR submetidos à sobrecarga de frutose: papel do treinamento físico aeróbio [Internet] [text]. Universidade de São Paulo; 2016 [citado 3 de fevereiro de 2021]. Disponível em: http://www.teses.usp.br/teses/disponiveis/5/5160/tde-04082016-154155/

Cunha TS, Farah V, Paulini J, Pazzine M, Elased KM, Marcondes FK, et al. Relationship between renal and cardiovascular changes in a murine model of glucose intolerance. Regul Pept. 2007;139(1–3):1–4. https://doi.org/10.1016/j.regpep.2006.11.023

Brito JO, Ponciano K, Figueroa D, Bernardes N, Sanches ÍC, Irigoyen MC, et al. Parasympathetic dysfunction is associated with insulin resistance in fructose-fed female rats. Braz J Med Biol Res. 2008;41(9):804–8. https://doi.org/10.1590/s0100-879x2008005000030

Conti FF, Brito J de O, Bernardes N, Dias D da S, Sanches IC, Malfitano C, et al. Cardiovascular autonomic dysfunction and oxidative stress induced by fructose overload in an experimental model of hypertension and menopause. BMC Cardiovasc Disord. 2014;14:185. https://doi.org/10.1186/1471-2261-14-185

Nowak KL, Jovanovich A, Farmer-Bailey H, Bispham N, Struemph T, Malaczewski M, et al. Vascular Dysfunction, Oxidative Stress, and Inflammation in Chronic Kidney Disease. Kidney360. 2020;1(6):501–9. https://doi.org/10.34067/kid.0000962019

Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, Guerrero-Hue M, García-Caballero C, Vázquez-Carballo C, et al. Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci. 2020;21(11):3798. https://doi.org/10.3390/ijms21113798

Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, Touyz RM. Oxidative Stress and Hypertension. Circ Res. 2021;128(7):993–1020. https://doi.org/10.1161/CIRCRESAHA.121.318063

Bernardes N, da Silva Dias D, Stoyell-Conti FF, de Oliveira Brito-Monzani J, Malfitano C, Caldini EG, et al. Baroreflex Impairment Precedes Cardiometabolic Dysfunction in an Experimental Model of Metabolic Syndrome: Role of Inflammation and Oxidative Stress. Sci Rep. 2018;8(1):8578. https://doi.org/10.1038/s41598-018-26816-4

Myers J, Kokkinos P, Nyelin E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients. 2019;11(7):E1652. https://doi.org/10.3390/nu11071652

da Silva Dias D, Moraes-Silva IC, Bernardes N, de Oliveira Brito-Monzani J, Stoyell-Conti FF, Machi JF, et al. Exercise training initiated at old stage of lifespan attenuates aging-and ovariectomy-induced cardiac and renal oxidative stress: Role of baroreflex. Exp Gerontol. 2019;124:110635. https://doi.org/10.1016/j.exger.2019.110635

de Oliveira Brito-Monzani J, Stoyell-Conti FF, Shecaira TP, Dos Santos Ferreira Silva MP, da Silva Dias D, Bernardes N, et al. Aerobic or resistance training improves autonomic control of circulation in oophorectomized rats with cardiometabolic dysfunctions: Impact on renal oxidative stress. Exp Gerontol. 2021;145:111181. https://doi.org/10.1016/j.exger.2020.111181

Dias D da S, Bernardes N, Stoyell-Conti FF, dos Santos CP, de Araujo AA, Llesuy S, et al. Impact of combined exercise training on the development of cardiometabolic and neuroimmune complications induced by fructose consumption in hypertensive rats. PLoS ONE. 2020;15(6):e0233785.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75. https://doi.org/10.1016/S0021-9258(19)52451-6

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5. https://doi.org/10.1016/S0021-9258(19)45228-9

Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1):161–70. https://doi.org/10.1016/0022-1759(80)90340-3

Granger DL, Anstey NM, Miller WC, Weinberg JB. Measuring nitric oxide production in human clinical studies. Methods Enzymol. 1999;301:49–61. https://doi.org/10.1016/s0076-6879(99)01068-x

Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973;134(3):707–16. https://doi.org/10.1042/bj1340707

Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

Benzie IF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. https://doi.org/10.1016/s0076-6879(99)99005-5

Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–63. https://doi.org/10.1016/s0076-6879(94)33041-7

Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–10. https://doi.org/10.1016/s0076-6879(78)52032-6

Sans Atxer L, Roca-Cusachs A, Torra R, Calero F, Arias P, Ballarin J, et al. Relationship between kidney size and blood pressure profile in patients with autosomal dominant polycystic kidney disease without renal failure. Nefrologia Ed. 2010;30(5):567–72. https://doi.org/10.3265/Nefrologia.pre2010.May.10418

Bernardes N, Ayyappan P, De Angelis K, Bagchi A, Akolkar G, da Silva Dias D, et al. Excessive consumption of fructose causes cardiometabolic dysfunctions through oxidative stress and inflammation. Can J Physiol Pharmacol. 2017;95(10):1078–90. https://doi.org/10.1139/cjpp-2016-0663

Nakamichi R, Hayashi K, Itoh H. Effects of High Glucose and Lipotoxicity on Diabetic Podocytes. Nutrients. 2021;13(1):241. https://doi.org/10.3390/nu13010241

Ejaz AA, Mu W, Kang DH, Roncal C, Sautin YY, Henderson G, et al. Could uric acid have a role in acute renal failure? Clin J Am Soc Nephrol. 2007;2(1):16–21. https://doi.org/10.2215/CJN.00350106

Ishimoto Y, Tanaka T, Yoshida Y, Inagi R. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clinical and Experimental Pharmacology and Physiology. 2018;45(11):1097–105. https://doi.org/10.1111/1440-1681.13018

Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017;120(4):713–35. https://doi.org/10.1161/CIRCRESAHA.116.309326

Dornas WC, de Lima WG, Pedrosa ML, Silva ME. Health implications of high-fructose intake and current research. Adv Nutr Bethesda Md. 2015;6(6):729–37. https://doi.org/10.3945/an.114.008144

Published

2023-06-01

How to Cite

1.
Viana do Nascimento Filho A, Gomes Gurgel G, Thomazetti D, Petrica Neves P, Rascio Henriques Dutra M, Plens Shecaira T, et al. Impact of exercise training on inflammatory and redox renal profiles in metabolic syndrome development. Cons. Saúde [Internet]. 2023 Jun. 1 [cited 2024 Jul. 2];22(1):e23408. Available from: https://periodicos.uninove.br/saude/article/view/23408

Issue

Section

Artigos