Prevendo a motivação e a intenção de participar e recomendar grupos de Comida e Bebida no Facebook via eWOM
uma investigação profunda com base na análise da RNA
DOI:
https://doi.org/10.5585/remark.v22i5.23229Palavras-chave:
eWOM; Motivações; Intenção de recomendar; Grupos no Facebook; Redes Neurais ArtificiaisResumo
Objetivo: Esta pesquisa tem como objetivo predizer a motivação e a intenção de participar e recomendar grupos de Comida e Bebida no Facebook, utilizando uma análise baseada em RNA.
Método: Os dados foram coletados de 345 indivíduos, com participação em pelo menos um grupo relacionado ao de Comida e Bebida. Para a análise dos dados, o método não linear da RNA foi utilizado para predizer ocorrências dentro de uma mesma amostra. A relevância da pesquisa está na utilização desse método de predição para testar o modelo teórico proposto, utilizando escalas adaptadas para o estudo.
Originalidade/Relevância: Dada a importância do tema eWOM nas redes sociais, sendo um dos temas de destaque na área, este estudo colabora com o aprofundamento do tema e contribui para a ampliação do conhecimento em métodos não lineares.
Resultados: Como resultado, com base nas revisões do modelo 1, ‘prazer em ajudar’ (44,8%) é o preditor mais importante de ‘motivações para eWOM’. Enquanto, com base na análise do modelo 2, o ‘senso de pertencimento’ (42,7%) é o mais importante para a intenção de recomendar via eWOM. Além disso, o modelo 1 e o modelo 2 apresentaram valores justos e observações para sua validação.
Contribuições teórico-metodológicas: Ajustou-se um modelo teórico por meio de escalas adaptadas para o estudo. Com isso, foi realizado um levantamento e, com base nos resultados obtidos na amostra, utilizou-se uma abordagem do método da RNA.
Contribuições sociais/de gestão: Este estudo ajuda participantes, administradores, moderadores e outros interessados em grupos de Comida e Bebida do Facebook a entender como eles funcionam e a aproveitar as informações trocadas para projetar estratégias que atendam às necessidades da comunidade.
Downloads
Referências
Alam, M. Z., Hu, W., Kaium, M. A., Hoque, M. R., & Alam, M. M. D. (2020). Understanding the determinants of mHealth apps adoption in Bangladesh: A SEM-Neural network approach. Technology in Society, 61, 101255. https://doi.org/10.1016/j.techsoc.2020.101255
Alexandrov, A., Lilly, B., & Babakus, E. (2013). The effects of social- and self-motives on the intentions to share positive and negative word of mouth. Journal of the Academy of Marketing Science, 531–546. https://doi.org/10.1007/s11747-012-0323-4
Algesheimer, R., Dholakia, U. M., & Herrmann, A. (2005). The Social Influence of Brand Community: Evidence from European Car Clubs. Journal of Marketing, 19–34. https://doi.org/10.1509/jmkg.69.3.19.66363
Caliendo, M., Fossen, F., & Kritikos, A. (2012). Trust, positive reciprocity, and negative reciprocity: Do these traits impact entrepreneurial dynamics? Journal of Economic Psychology, 394–409. https://doi.org/10.1016/j.joep.2011.01.005
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2021). Introduction to Meta-Analysis. Wiley, 2nd Edition. ISBN: 978-1-119-55835-4
Carvalho, G. S. (2015). As motivações do eWom entre os utilizadores do facebook [Dissertação de Mestrado]. Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Leiria. Disponível em: https://core.ac.uk/download/pdf/61798558.pdf Acesso em 06/11/2022.
Chai, S., & Kim, M. (2012). A socio-technical approach to knowledge contribution behavior: An empirical investigation of social networking sites users. International Journal of Information Management, 118–126. https://doi.org/10.1016/j.ijinfomgt.2011.07.004
Chang, K.-C., Hsu, C.-L., Chen, M.-C., & Kuo, N.-T. (2017). How a branded website creates customer purchase intentions. Total Quality Management & Business Excellence, 422–446. https://doi.org/10.1080/14783363.2017.1308819
Chen, C.-W. D., & Cheng, C.-Y. J. (2009). Understanding consumer intention in online shopping: A respecification and validation of the DeLone and McLean model. Behaviour & Information Technology, 335–345. https://doi.org/10.1080/01449290701850111
Cheung, C. M. K., & Lee, M. K. O. (2012). What drives consumers to spread electronic word of mouth in online consumer-opinion platforms. Decision Support Systems, 218–225. https://doi.org/10.1016/j.dss.2012.01.015
Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 461–470. https://doi.org/10.1016/j.dss.2012.06.008
Cheung, M., Luo, C., Sia, C., & Chen, H. (2009). Credibility of electronic word-of-mouth: Informational and normative determinants of on-line consumer recommendations. International Journal of Electronic Commerce, 13(4), 9–38. https://doi.org/10.2753/JEC1086-4415130402
Chi, T. (2018). Understanding Chinese consumer adoption of apparel mobile commerce: An extended TAM approach. Journal of Retailing and Consumer Services, 274–284. https://doi.org/10.1016/j.jretconser.2018.07.019
Chiang, C.-F. (2018). Influences of price, service convenience, and social servicescape on post-purchase process of capsule hotels. Asia Pacific Journal of Tourism Research, 373–384. https://doi.org/10.1080/10941665.2018.1444649
Chiang, L., Xu, A., Kim, J., Tang, L., & Manthiou, A. (2017). Investigating festivals and events as social gatherings: The application of social identity theory. Journal of Travel & Tourism Marketing, 779–792. https://doi.org/10.1080/10548408.2016.1233927
Comrey, A. L., & Lee, H. B. (2013). A first course in factor analysis. Psychology press.
Deldjoo, Y., Schedl, M., Cremonesi, P., & Pasi, G. (2020). Recommender systems leveraging multimedia content. ACM Computing Surveys (CSUR), 53(5), 1-38.
Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. Journal of Business Research, 758–773. https://doi.org/ 10.1016/j.jbusres.2021.07.015
Ellison, N. B., & Boyd, D. M. (2008). Social Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communication, 210–230. https://doi.org/10.1111/j.1083-6101.2007.00393.x
Erkan, I., & Evans, C. (2016). The influence of eWOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Computers in Human Behavior, 47–55. https://doi.org/10.1016/j.chb.2016.03.003
Fisher, G. (2019). Online communities and firm advantages. Academy of Management Review, 279–298. https://doi.org/10.5465/amr.2015.0290
Gharib, R. K., Garcia-Perez, A., Dibb, S., & Iskoujina, Z. (2020). Trust and reciprocity effect on electronic word-of-mouth in online review communities. Journal of Enterprise Information Management, 120–138. https://10.1108/jeim-03-2019-0079
Guidi, B., Michienzi, A., & De Salve, A. (2020). Community evaluation in Facebook groups. Multimedia Tools and Applications, 33603–33622. https://doi.org/10.1007/s11042-019-08494-0
Hair, J., Babin, B., Anderson, R., & Black, W. (2018). Multivariate Data Analysis (8a ed).
Haykin, S. (1998). Neural Networks: A Comprehensive Foundation (Subsequent edition). Prentice Hall.
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic Word of Mouth: Motives for and Consequences of Reading Customer Articulations on the Internet. Journal of Interactive Marketing, 51–74. https://doi.org/10.1080/10864415.2003.11044293
Hu, Y., & Kim, H. J. (2018). Positive and negative eWOM motivations and hotel customers’ eWOM behavior: Does personality matter? International Journal of Hospitality Management, 27–37. https:/doi.org/10.1016/j.ijhm.2018.03.004
Hussain, S., Ahmed, W., Jafar, R. M. S., Rabnawaz, A., & Jianzhou, Y. (2017). EWOM source credibility, perceived risk and food product customer’s information adoption. Computers in Human Behavior, 96–102. https://doi.org/10.1016/j.chb.2016.09.034
Jeong, E., & Jang, S. (2011). Restaurant experiences triggering positive electronic word-of-mouth (eWOM) motivations. International Journal of Hospitality Management, 356–366. https://doi.org/10.1016/j.ijhm.2010.08.005
Kankanhalli, A., Tan, B. C. Y., & Wei, K.-K. (2005). Contributing Knowledge to Electronic Knowledge Repositories: An Empirical Investigation. MIS Quarterly, 113–143. https://doi.org/ 10.2307/25148670
Killian, M., Fahy, J., & O’Loughlin, D. (2016). The Case for Altruism in eWoM Motivations. Making a Difference Through Marketing, 129–142. https://doi.org/ 10.1007/978-981-10-0464-3_10
Kudeshia, C., & Kumar, A. (2017). Social eWOM: does it affect the brand attitude and purchase intention of brands? Management Research Review, 310–330. https://doi.org/ 10.1108/MRR-07-2015-0161
Lee, A., & Fiore, A. M. (2023). Factors affecting social media usage by market mavens for fashion-related information provision. Journal of Fashion Marketing and Management: An International Journal. https://doi.org/ 10.1108/JFMM-05-2022-0108
Leong, L.-Y., Hew, T.-S., Ooi, K.-B., & Dwivedi, Y. K. (2020). Predicting trust in online advertising with an SEM-artificial neural network approach. Expert Systems with Applications. https://doi.org/ 10.1016/j.eswa.2020.113849
Leong, L.-Y., Hew, T.-S., Tan, G. W.-H., & Ooi, K.-B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604–5620. https://doi.org/10.1016/j.eswa.2013.04.018
Li, J., Xu, N., & Zhong, Y. (2021). Monetary payoffs modulate reciprocity expectations in outcome evaluations: An event‐related potential study. European Journal of Neuroscience, 53(3), 902-915. https:/doi/org/ 10.1111/EJN.15100
Liébana-Cabanillas, F., Marinkovic, V., & Kalinic, Z. (2017). A SEM-neural network approach for predicting antecedents of m-commerce acceptance. International Journal of Information Management, 14–24. https:/doi.org/ 10.1016/j.ijinfomgt.2016.10.008
Michienzi, A., Guidi, B., Ricci, L., & De Salve, A. (2021). Incremental communication patterns in online social groups. Knowledge and Information Systems, 63, 1339-1364. https://doi.org/ 10.1007/S10115-021-01552-W
Moser, C., Resnick, P., & Schoenebeck, S. (2017). Community Commerce: Facilitating Trust in Mom-to-Mom Sale Groups on Facebook. 4344–4357. https://doi.org/ 10.1145/3025453.3025550
Mukhopadhyay, S., Pandey, R., & Rishi, B. (2022). Electronic word of mouth (eWOM) research – a comparative bibliometric analysis and future research insight. Journal of Hospitality and Tourism Insights, Vol. ahead-of-print.
Naujoks, A., & Benkenstein, M. (2020). Who is behind the message? The power of expert reviews on eWOM platforms. Electronic Commerce Research and Applications, 44, 101015. https:// 10.1016/j.elerap.2020.101015
Ooi, K.-B., & Tan, G. W.-H. (2016). Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Systems with Applications, 33–46.
Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 531–544. https://10.1016/j.eswa.2016.04.015
Pi, S.-M., Chou, C.-H., & Liao, H.-L. (2013). A study of Facebook Groups members’ knowledge sharing. Computers in Human Behavior, 1971–1979. https://10.1016/j.chb.2013.04.019
Pinochet, L. H. C., Lopes, E. L., Araujo, P. G., & Bueno, R. L. P. (2019). The influence of online recommendation mechanisms in the Smartphone market in the context of electronic word-of-mouth. International Journal of Electronic Marketing and Retailing, 10(3), 209–229. https://doi.org/10.1504/IJEMR.2019.100702
Rahaman, M. A., Hassan, H. M. K., Asheq, A. A., & Islam, K. M. A. (2022). The interplay between eWOM information and purchase intention and social media: Through the lens of IAM and TAM theory, PLOS ONE, 1-19. https://doi.org/10.1371/journal.pone.0272926
Rosario, A. B., de Valck, K., & Sotgiu, F. (2020). Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation. Journal of the Academy of Marketing Science, 422–448. https://doi.org/ 10.1007/s11747-019-00706-1
Rothschild, N., & Aharony, N. (2022). Motivations for sharing personal information and self-disclosure in public and private Facebook groups of mentally ill people. Aslib Journal of Information Management, (ahead-of-print).
Serra, D. do E. S., & Soto-Sanfiel, M. T. (2014). When the user becomes a publicist: motivations for ewom on facebook. Revista Brasileira de Marketing, 1–16. https://doi.org/ 10.5585/remark.v13i1.2584
Shah, A. M., Yan, X., Shah, S. A. A., & Ali, M. (2020). Customers’ perceived value and dining choice through mobile apps in Indonesia. Asia Pacific Journal of Marketing and Logistics, 1-28. https:/doi.org/10.1108/APJML-03-2019-0167
Sundaram, D. S., Mitra, K., & Webster, C. (1998). Word-Of-Mouth Communications: A Motivational Analysis. NA - Advances in Consumer Research, 527–531.
Tobon, S., & Garcia-Madariaga, J. (2021). The Influence of Opinion Leaders’ eWOM on Online Consumer Decisions: A Study on Social Influence. Journal of Theoretical and Applied Electronic Commerce Research, 16(4), 748–767. https://doi.org/10.3390/jtaer16040043
Wang, Z., Yuan, Y., Zhou, X., & Qin, H. (2020). Effective and efficient community search in directed graphs across heterogeneous social networks. In Databases Theory and Applications: 31st Australasian Database Conference, ADC 2020, Melbourne, VIC, Australia, February 3–7, 2020, Proceedings 31 (pp. 161-172). Springer International Publishing.
Wasko, M. M., & Faraj, S. (2005). Why should I share? examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly, 35–57. https://doi.org/10.2307/25148667
We are social, & Hootsuite. (2021). Digital 2021: Brazil (43–51). https://datareportal.com/reports/digital-2021-brazil
Yang, F. X. (2013). Effects of Restaurant Satisfaction and Knowledge Sharing Motivation on eWOM Intentions: The Moderating Role of Technology Acceptance Factors. Journal of Hospitality & Tourism Research, 1–35. https://doi.org/10.1177/1096348013515918
Yang, H. (2013). Market Mavens in social media: Examining Young Chinese Consumers’ Viral Marketing Attitude, eWOM Motive, and Behavior. Journal of Asia-Pacific Business, 154–178. https://doi.org/10.1080/10599231.2013.756337
Yang, X. (2019). How perceived social distance and trust influence reciprocity expectations and eWOM sharing intention in social commerce. Industrial Management & Data Systems, 119(4), 867-880. https://doi.org/ 10.1108/IMDS-04-2018-0139
Zabukovšek, S. S., Kalinic, Z., Bobek, S., & Tominc, P. (2019). SEM–ANN based research of factors’ impact on extended use of ERP systems. Central European Journal of Operations Research, 703–735. https://doi.org/10.1007/s10100-018-0592-1
Zhang, T., Omran, B. A., & Cobanoglu, C. (2017). Generation Y’s positive and negative eWOM: use of social media and mobile technology. International Journal of Contemporary Hospitality Management, 732–761. https://doi.org/10.1108/IJCHM-10-2015-0611
Zhuang, L., Sun, R., Chen, L., & Tang, W. (2023). The Impact of Shared Information Presentation Time on Users’ Privacy-Regulation Behavior in the Context of Vertical Privacy: A Moderated Mediation Model. Behavioral Sciences, 13(9), 706. https://doi.org/ 10.3390/BS13090706
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 ReMark - Revista Brasileira de Marketing
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.