Fome de tecnologia: retenção de usuários do m-commerce no mercado de delivery de alimentos
DOI:
https://doi.org/10.5585/remark.v22i4.23354Palavras-chave:
Mobile marketing, M-commerce, Tecnologia no varejo, Transformação digitalResumo
Objetivo: Desenvolver um modelo de retenção de usuários de m-commerce para a indústria de aplicativos de entrega de alimentos, combinando aceitação de tecnologia e elementos fundamentais de m-commerce para explicar a retenção no m-commerce.
Método: Um modelo de seis fatores (conveniência percebida, contexto dependente da situação, facilidade de uso, dimensão hedônica, dimensão utilitária e preocupações com a privacidade) foi testado em uma amostra de 282 usuários de um aplicativo de entrega de comida no Brasil. As hipóteses foram testadas utilizando Modelagem de Equações Estruturais.
Resultados: A conveniência percebida é o principal antecedente da retenção no m-commerce, abrangendo características de personalização e ubiquidade, gerando um construto ampliado. Os aspectos utilitários estão ligados à conveniência trazida pelo m-commerce, uma vez que os consumidores tendem a valorizar a dimensão utilitária em comparação com a dimensão hedônica do app. A segurança da privacidade percebida pelos consumidores é outro antecedente da retenção no m-commerce.
Contribuições teóricas/metodológicas: Apresentamos o modelo de retenção de m-commerce para aplicativos de entrega de comida, combinando a aceitação da tecnologia e os elementos fundamentais do m-commerce. Conveniência percebida, aspectos utilitários e segurança da privacidade compõem nosso modelo final, conformando os principais drivers tecnológicos de retenção do m-commerce. Mostramos também a relevância da dimensão utilitária em detrimento da dimensão hedônica.
Originalidade/Relevância: O estudo apresenta contribuições para o campo de estudo que envolvem o comportamento do consumidor e o ambiente de varejo m-commerce, em especial a retenção de usuários de m-commerce em aplicativos de entrega de alimentos.
Downloads
Referências
Akram, U., Ansari, A. R., Fu, G., & Junaid, M. (2020). Feeling hungry? let's order through mobile! examining the fast food mobile commerce in China. Journal of Retailing and Consumer Services, 56, 102142. https://doi.org/10.1016/j.jretconser.2020.102142
Al-Amin, M., Arefin, M., Sultana, N., Islam, M., Jahan, I., & Akhtar, A. (2021), Evaluating the customers’ dining attitudes, e-satisfaction and continuance intention toward mobile food ordering apps (MFOAs): evidence from Bangladesh, European Journal of Management and Business Economics, 30(2), 211-229. https://doi.org/10.1108/EJMBE-04-2020-0066
Alnawas, I., & Aburub, F. (2016). The effect of benefits generated from interacting with branded mobile apps on consumer satisfaction and purchase intentions. Journal of Retailing and Consumer Services, 31, 313-322. https://doi.org/10.1016/j.jretconser.2016.04.004
Anuar, J., Musa, M., & Khalid, K. (2014). Smartphone's application adoption benefits using mobile hotel reservation system (MHRS) among 3 to 5-star city hotels in Malaysia. Procedia-Social and Behavioral Sciences, 130, 552-557. https://doi.org/10.1016/j.sbspro.2014.04.064
Belk, R. W. (2020). Post-pandemic consumption: portal to a new world?. Cadernos EBAPE. BR, 18, 639-647. https://doi.org/10.1590/1679-395120200175x
Bellman, S., Potter, R. F., Treleaven-Hassard, S., Robinson, J. A., & Varan, D. (2011). The effectiveness of branded mobile phone apps. Journal of interactive Marketing, 25(4), 191-200. https://doi.org/10.1016/j.intmar.2011.06.001
Bilgihan, A., Kandampully, J., & Zhang, T. C. (2016). Towards a unified customer experience in online shopping environments. International Journal of Quality and Service Sciences, 8(1), 102-119. https://doi.org/10.1108/IJQSS-07-2015-0054
Blumtritt, C. (2020). Online food delivery report 2020.
Brislin, R. W. (1970). Back-translation for cross-cultural research. Journal of cross-cultural psychology, 1(3), 185-216. https://doi.org/10.1177/135910457000100301
Bruner II, G. C., & Kumar, A. (2005). Explaining consumer acceptance of handheld Internet devices. Journal of business research, 58(5), 553-558. https://doi.org/10.1016/j.jbusres.2003.08.002
Chauhan, S., Kumar, P., & Jaiswal, M. (2021). A meta-analysis of M-commerce continuance intention: moderating impact of culture and user types. Behaviour & Information Technology, 1-19. https://doi.org/10.1080/0144929X.2021.1960607
Chan, J. O. P. (2020). Digital transformation in the era of big data and cloud computing. International Journal of Intelligent Information Systems, 9(3), 16-23. https://pdfs.semanticscholar.org/bdbd/d0c75a304a536277e815a4e5ca1b1f7eaa95.pdf
Chong, A. Y. L. (2013). A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Systems with Applications, 40(4), 1240-1247. https://doi.org/10.1016/j.eswa.2012.08.067
Chau, N. T., & Deng, H. (2018). Critical determinants for mobile commerce adoption in Vietnamese SMEs: A conceptual framework. Procedia computer science, 138, 433-440. https://doi.org/10.1016/j.procs.2018.10.061
Cho, M., Bonn, M. A., & Li, J. J. (2019). Differences in perceptions about food delivery apps between single-person and multi-person households. International Journal of Hospitality Management, 77, 108-116. https://doi.org/10.1016/j.ijhm.2018.06.019
Chopdar, P. K., & Balakrishnan, J. (2020). Consumers response towards mobile commerce applications: SOR approach. International Journal of Information Management, 53, 102106. https://doi.org/10.1016/j.ijinfomgt.2020.102106
Clarke III, I. (2001). Emerging value propositions for m-commerce. Journal of business strategies, 18(2), 133-148.
Cohen, J. (2013), Statistical power analysis for the behavioral sciences, Routledge.
Daily Mail (2023), More than 17,000 shops shut in 2022 in worst year for retail in five years: Nearly 50 stores closed every day with 150,000 jobs lost from High Street and out-of-town shopping centres, available at: https://www.dailymail.co.uk/news/wechat/article-11590941/Nearly-50-shops-closed-doors-day-UK-year-survey.html (acessed 2 August 2023).
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340. https://doi.org/10.2307/249008
Eger, L., Komárková, L., Egerová, D., & Mičík, M. (2021). The effect of COVID-19 on consumer shopping behaviour: Generational cohort perspective. Journal of Retailing and consumer services, 61, 102542. https://doi.org/10.1016/j.jretconser.2021.102542
Fang, Y. H. (2017). Beyond the usefulness of branded applications: Insights from consumer–brand engagement and self‐construal perspectives. Psychology & Marketing, 34(1), 40-58. https://doi.org/10.1002/mar.20972
Figge, S. (2004). Situation-dependent services—a challenge for mobile network operators. Journal of Business Research, 57(12), 1416-1422. https://doi.org/10.1016/S0148-2963(02)00431-9
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: Pearson new international edition. Essex: Pearson Education Limited.
Harris, M. A., Brookshire, R., & Chin, A. G. (2016). Identifying factors influencing consumers’ intent to install mobile applications. International Journal of Information Management, 36(3), 441-450. https://doi.org/10.1016/j.ijinfomgt.2016.02.004
Holmes, A., Byrne, A., & Rowley, J. (2014). Mobile shopping behaviour: insights into attitudes, shopping process involvement and location. International Journal of Retail & Distribution Management. https://doi.org/10.1108/IJRDM-10-2012-0096
Huang, M. H. (2005), Web performance scale. Information & Management, 42(6), 841-852. https://doi.org/10.1016/j.im.2004.06.003
Hung, M. C., Yang, S. T., & Hsieh, T. C. (2012). An examination of the determinants of mobile shopping continuance. International Journal of Electronic Business Management, 10(1), 29.
Japutra, A., Molinillo, S., Utami, A. F., & Ekaputra, I. A. (2022). Exploring the effect of relative advantage and challenge on customer engagement behavior with mobile commerce applications. Telematics and Informatics, 101841. https://doi.org/10.1016/j.tele.2022.101841
Kamiya, A. S. M., & Branisso, D. S. P. (2021). In the right place at the right time: a review of mobile location-based marketing and a research agenda. REMark, 20(2), 199. https://doi.org/10.5585/remark.v20i2.18713
Kim, S., & Garrison, G. (2009). Investigating mobile wireless technology adoption: An extension of the technology acceptance model. Information Systems Frontiers, 11(3), 323-333. https://doi.org/10.1007/s10796-008-9073-8
Kokolakis, S. (2017). Privacy attitudes and privacy behaviour: A review of current research on the privacy paradox phenomenon. Computers & security, 64, 122-134. https://doi.org/10.1016/j.cose.2015.07.002
Lee, J. M., & Rha, J. Y. (2016). Personalization–privacy paradox and consumer conflict with the use of location-based mobile commerce. Computers in Human Behavior, 63, 453-462. https://doi.org/10.1016/j.chb.2016.05.056
LI, J., & Mo, W. (2015). The O2O Mode in Electronic Commerce. Proceedings of theInternational Conference on Education, Management, Commerce and Society, 17, 238–241. https://doi.org/10.2991/emcs-15.2015.50
Limayem, M., Khalifa, M., & Frini, A. (2000). What makes consumers buy from Internet? A longitudinal study of online shopping. IEEE Transactions on systems, man, and Cybernetics-Part A: Systems and Humans, 30(4), 421-432. https://doi.org/10.1109/3468.852436
Liu, W., & Huang, J. (2017). Adaptive leader-following consensus for a class of higher-order nonlinear multi-agent systems with directed switching networks. Automatica, 79, 84-92. https://doi.org/10.1016/j.automatica.2017.02.010
Longaray, A. A., Castelli, T. M., Maia, C. R., & Tondolo, V. G. (2021). Study about the Evaluation of Internet Banking and Mobile Banking Users’ Satisfaction in Brazil. REMark, 20(1), 27. https://doi.org/10.5585/remark.v20i1.14590
Luo, X., Andrews, M., Fang, Z., & Phang, C. W. (2014). Mobile targeting. Management Science, 60(7), 1738-1756. https://doi.org/10.1287/mnsc.2013.1836
Magnusson, J., Elliot, V., & Hagberg, J. (2022). Digital transformation: why companies resist what they need for sustained performance. Journal of Business Strategy, 43(5), 316-322. https://doi.org/10.1108/JBS-02-2021-0018
Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information systems research, 15(4), 336-355. https://doi.org/10.1287/isre.1040.0032
Marriott, H. R., & Williams, M. D. (2016). Developing a theoretical model to examine consumer acceptance behavior of mobile shopping. In Conference on e-Business, e-Services and e-Society (pp. 261-266). Springer, Cham. https://doi.org/10.1007/978-3-319-45234-0_24
Marriott, H. R., Williams, M. D., & Dwivedi, Y. K. (2017). What do we know about consumer m-shopping behaviour?. International Journal of Retail & Distribution Management. 45( )6, 568-586. https://doi.org/10.1108/IJRDM-09-2016-0164
Marriott, H. R., & Williams, M. D. (2018). Exploring consumers perceived risk and trust for mobile shopping: A theoretical framework and empirical study. Journal of retailing and consumer services, 42, 133-146. https://doi.org/10.1016/j.jretconser.2018.01.017
McKinsey & Company (2019), Brazil Digital Report, available at: https://www.mckinsey.com/br/our-insights/blog-made-in-brazil/brazil-digital-report (accessed 4 October 2023).
McLean, G. (2018). Examining the determinants and outcomes of mobile app engagement-A longitudinal perspective. Computers in Human Behavior, 84, 392-403. https://doi.org/10.1016/j.chb.2018.03.015
McLean, G., Osei-Frimpong, K., Al-Nabhani, K., & Marriott, H. (2020). Examining consumer attitudes towards retailers' m-commerce mobile applications–An initial adoption vs. continuous use perspective. Journal of Business Research, 106, 139-157. https://doi.org/10.1016/j.jbusres.2019.08.032
Morosan, C. (2014). Toward an integrated model of adoption of mobile phones for purchasing ancillary services in air travel. International journal of contemporary hospitality management. 26(2), 246-271. https://doi.org/10.1108/IJCHM-11-2012-0221
Morosan, C., & DeFranco, A. (2016). Modeling guests’ intentions to use mobile apps in hotels: The roles of personalization, privacy, and involvement. International Journal of Contemporary Hospitality Management. 28(9), 1968-1991. https://doi.org/10.1108/IJCHM-07-2015-0349
Oberlo (2022). MOBILE COMMERCE SALES IN 2022 , available at: https://www.oberlo.com/statistics/mobile-commerce-sales (accessed 4 August 2023).
Okazaki, S., & Mendez, F. (2013a). Exploring convenience in mobile commerce: Moderating effects of gender. Computers in Human Behavior, 29(3), 1234-1242. https://doi.org/10.1016/j.chb.2012.10.019
Okazaki, S., & Mendez, F. (2013b). Perceived ubiquity in mobile services. Journal of Interactive marketing, 27(2), 98-111. https://doi.org/10.1016/j.intmar.2012.10.001
Okazaki, S., Molina, F. J., & Hirose, M. (2012). Mobile advertising avoidance: exploring the role of ubiquity. Electronic Markets, 22(3), 169-183. https://doi.org/10.1007/s12525-012-0087-1
Ozturk, A. B., Bilgihan, A., Nusair, K., & Okumus, F. (2016). What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. International Journal of Information Management, 36(6), 1350-1359. https://doi.org/10.1016/j.ijinfomgt.2016.04.005
Pigatto, G., Machado, J. G. D. C. F., dos Santos Negreti, A., & Machado, L. M. (2017). Have you chosen your request? Analysis of online food delivery companies in Brazil. British Food Journal, 119(3), 639-657. https://doi.org/10.1108/BFJ-05-2016-0207
Ray, A., Dhir, A., Bala, P. K., & Kaur, P. (2019). Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. Journal of retailing and consumer services, 51, 221-230. https://doi.org/10.1016/j.jretconser.2019.05.025
Roy, S., & Moorthi, Y. L. R. (2017). Technology readiness, perceived ubiquity and M-commerce adoption: The moderating role of privacy. Journal of Research in Interactive Marketing. 11(3), 268-295. https://doi.org/10.1108/JRIM-01-2016-0005
Semblante, C. J., Catanduanes, R., Martin, A., Radaza, K. J. I., Bokingkito Jr, P., & Velasco, L. C. (2023). Food Delivery Service Applications in Highly Urbanized Cities: A Scoping Review. International Journal of Computing and Digital Systems, 14(1), 1-12.
Seuwou, P., Banissi, E., & Ubakanma, G. (2016). User acceptance of information technology: A critical review of technology acceptance models and the decision to invest in Information Security. In Global Security, Safety and Sustainability-The Security Challenges of the Connected World: 11th International Conference, ICGS3 2017, London, UK, January 18-20, 2017, Proceedings 11 (pp. 230-251). Springer International Publishing. https://doi.org/10.1007/978-3-319-51064-4_19
Shankar, V., Kleijnen, M., Ramanathan, S., Rizley, R., Holland, S., & Morrissey, S. (2016). Mobile shopper marketing: Key issues, current insights, and future research avenues. Journal of Interactive Marketing, 34(1), 37-48. https://doi.org/10.1016/j.intmar.2016.03.002
Shankar, A., Rishi, B. (2020). Convenience matter in mobile banking adoption intention? Australasian Marketing Journal, 28(4): 273–285. https://doi.org/10.1016/j.ausmj.2020.06.008
Shen, X. L., Wang, N., Sun, Y., & Xiang, L. (2013). Unleash the power of mobile word‐of‐mouth: An empirical study of system and information characteristics in ubiquitous decision making. Online Information Review. 37(1), 42-60. https://doi.org/10.1108/14684521311311621
Soares, J. C., Limongi, R., De Sousa Júnior, J. H., Santos, W. S., Raasch, M. and Hoeckesfeld, L. (2022), Assessing the effects of COVID-19-related risk on online shopping behavior. Journal of Marketing Analytics, 1-13. https://doi.org/10.1057/s41270-022-00156-9
Spiekermann, S., Rothensee, M., & Klafft, M. (2011). Street marketing: how proximity and context drive coupon redemption. Journal of Consumer Marketing. 28(4), 280-289. https://doi.org/10.1108/07363761111143178
Statista (2023a), Forecast number of mobile devices worldwide from 2020 to 2025 (in billions), available at: https://www.statista.com/statistics/245501/multiple-mobile-device-ownership-worldwide (accessed 2 August 2023).
Statista (2023b), Online food delivery – statistics & facts, available at: https://www.statista.com/topics/9212/online-food-delivery/#topicOverview (accessed 2 August 2023).
Statista (2023c), Online food delivery users worldwide 2022-2027, by region, available at: https://www.statista.com/forecasts/1358171/online-food-delivery-users-by-region-worldwide#:~:text=Online%20food%20delivery%20users%20worldwide%202022%2D2027%2C%20by%20region&text=Approximately%202.5%20billion%20people%20worldwide,percent)%20of%20all%20users%20worldwide (accessed 15 August 2023).
Statista (2023d), Key figures on food delivery company iFood in Brazil as of April 2022, available at: https://www.statista.com/statistics/1051639/brazil-key-figures-food-delivery-app-ifood (accessed 2 August 2023).
Stocker, V., Lehr, W., & Smaragdakis, G. (2023). COVID-19 and the Internet: Lessons learned. In Beyond the Pandemic? Exploring the Impact of COVID-19 on Telecommunications and the Internet (pp. 17-69). Emerald Publishing Limited. https://doi.org/10.1108/978-1-80262-049-820231002
Tandon, A., Kaur, P., Bhatt, Y., Mäntymäki, M., & Dhir, A. (2021). Why do people purchase from food delivery apps? A consumer value perspective. Journal of Retailing and Consumer Services, 63, 102667. https://doi.org/10.1016/j.jretconser.2021.102667
Timur, B., Oguz, Y. E., & Yilmaz, V. (2023). Consumer behavior of mobile food ordering app users during COVID-19: dining attitudes, e-satisfaction, perceived risk, and continuance intention. Journal of Hospitality and Tourism Technology, 14(3), 460-475. https://doi.org/10.1108/JHTT-04-2021-0129
United Nations (UN) (2022), World Population Prospects 2022, available at: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed 2 August 2023).
Vandana, V., Kumar, S., Kumar, V., & Goyal, P. (2023). Investigating the Impact of Online Service Convenience on Customer Engagement, Attitude and Intention to Use Food Delivery Apps. International Journal on Food System Dynamics, 14(3), 331-344. https://doi.org/10.18461/ijfsd.v14i3.G6
Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 157-178. https://doi.org/10.2307/41410412
Vinerean, S., Budac, C., Baltador, L. A., & Dabija, D. C. (2022). Assessing the Effects of the COVID-19 Pandemic on M-Commerce Adoption: An Adapted UTAUT2 Approach. Electronics, 11(8), 1269. https://doi.org/10.3390/electronics11081269
Voss, K. E., Spangenberg, E. R., & Grohmann, B. (2003). Measuring the hedonic and utilitarian dimensions of consumer attitude. Journal of marketing research, 40(3), 310-320. https://doi.org/10.1509/jmkr.40.3.310.19238
Xu, X., Huang, Y., 2019. Restaurant information cues, diners’ expectations, and need for cognition: experimental studies of online-to-offline mobile food ordering. J. Retailing Consum. Serv. 51, 231–241. https://doi.org/10.1016/j.jretconser.2019.06.010
World Trade Organization (WTO). E-Commerce, Trade and the COVID-19 Pandemic; World Trade Organization: Geneva, Switzerland, 2020; Volume 5.
Yang, Y., Asaad, Y., & Dwivedi, Y. (2017). Examining the impact of gamification on intention of engagement and brand attitude in the marketing context. Computers in Human Behavior, 73, 459-469. https://doi.org/10.1016/j.chb.2017.03.066
Yeo, V. C. S., Goh, S. K., & Rezaei, S. (2017). Consumer experiences, attitude and behavioral intention toward online food delivery (OFD) services. Journal of Retailing and Consumer services, 35, 150-162. https://doi.org/10.1016/j.jretconser.2016.12.013
Zanetta, L. D. A., Hakim, M. P., Gastaldi, G. B., Seabra, L. M. A. J., Rolim, P. M., Nascimento, L. G. P., ... & da Cunha, D. T. (2021). The use of food delivery apps during the COVID-19 pandemic in Brazil: The role of solidarity, perceived risk, and regional aspects. Food Research International, 149, 110671. https://doi.org/10.1016/j.foodres.2021.110671
Zhao, Y., & Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period?. International journal of hospitality management, 91, 102683. https://doi.org/10.1016/j.ijhm.2020.102683
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Matheus Alexandre Borges Mundim, Fernanda Bueno Cardoso Scussel, Martin de La Martinière Petroll, Cláudio Damacena, João Coelho Soares

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
- Resumo 449
- PDF 418