Identificação de fatores críticos que afetam a aceitação do Sistema de Gerenciamento de Aprendizagem (LMS) dos alunos na Arábia Saudita

Autores

DOI:

https://doi.org/10.5585/iji.v9i2.19652

Palavras-chave:

Sistema de Gestão da Aprendizagem, Teoria unificada de aceitação e uso de tecnologia, Intenção comportamental de uso, Análise de regressão.

Resumo

Objetivo do estudo: O objetivo é identificar os fatores que influenciam a aceitação do aluno do Sistema de Gestão de Aprendizagem (LMS) usando o modelo da Teoria Unificada de Aceitação e Uso da Tecnologia (UTAUT). Este estudo investiga como os fatores UTAUT afetam a intenção e as atitudes dos alunos para usar o Blackboard como um LMS na King Abdulaziz University, na Arábia Saudita.

Metodologia / abordagem: Este estudo propõe um modelo de pesquisa baseado nos fatores UTAUT 'Expectativa de Esforço (EE), Expectativa de Desempenho (PE), Funcionalidade Percebida (FP), Condição Facilitadora (FC), Influência Social (SI)', Intenção Comportamental usar (BI) e comportamento de uso. A metodologia de pesquisa da pesquisa foi adotada por meio de questionário para identificar os fatores que influenciam a intenção e as atitudes dos alunos em relação ao LMS.

Originalidade / relevância: O estudo relaciona o LMS corporativo para apoiar instituições educacionais a fim de aumentar a aceitação e as atitudes dos alunos para uso na Arábia Saudita.

Resultado principal: Os resultados indicam que os fatores PE, PF, FC e SI foram significativos e influenciam diretamente no quadro negro de BI dos alunos. Ambos PE e FC são segundos fatores que afetam a atenção dos alunos e o fator de EE não afeta o BI do aluno.

Contribuições teóricas / metodológicas: O estudo contribui para o corpo de conhecimento no desenvolvimento do modelo de pesquisa usando o modelo UTAUT, mostrando os fatores que afetam a intenção dos alunos em usar LMS e o comportamento de uso na Arábia Saudita.

Contribuições sociais / de gestão: Este estudo contribui para a compreensão dos fatores críticos que afetam as intenções dos alunos da Arábia Saudita ao usar o Blackboard. Outro estudo deve ser estendido a outras universidades, usando diferentes métodos para testar o modelo e incorporar diferentes fatores moderadores para aceitar e usar o Blackboard.

Downloads

Biografia do Autor

Amjad Alharbi, Kind Abdulaziz University – KAU

Graduate Student. Information System Department, Faculty of Computing and Information Technology, Kind Abdulaziz University – KAU

Nahla Aljojo, University of Jeddah – UJ

Associate Professor. Information system and Technology Department, College of Computer Science and Engineering, University of Jeddah – UJ

Azida Zainol, University of Jeddah – UJ

Assistant Professor. Software Engineering Department, College of Computer Science and Engineering, University of Jeddah – UJ

Areej Alshutayri, University of Jeddah – UJ

Assistant Professor. Computer Science and Artificial Intelligence Department, College of Computer Science and Engineering, University of Jeddah – UJ

Basma Alharbi, University of Jeddah – UJ

Assistant Professor. Computer Science and Artificial Intelligence Department, College of Computer Science and Engineering, University of Jeddah – UJ

Eman Aldhahri, University of Jeddah – UJ

Assistant Professor. Computer Science and Artificial Intelligence Department, College of Computer Science and Engineering, University of Jeddah – UJ

Enas Fawzi Khairullah, Kind Abdulaziz University – KAU

Assistant Professor. Information Technology Department, Faculty of Computing and Information Technology, Kind Abdulaziz University – KAU

Seita Almandeel, King Abdulaziz University - KAU

Associate Professor. Faculty of Economics & Administration, Department of Business Administration, King Abdulaziz University - KAU

Referências

Al-Adwan, A., Al-Adwan, A. & Smedley, J., (2013), Exploring students acceptance of e-learning using Technology Acceptance Model in Jordanian universities. International Journal of Education and Development using ICT. 9(2). http://ijedict.dec.uwi.edu//viewarticle.php?id=1617

Al-Busaidi, K.A. & Al-Shihi, H., (2010), Instructors' acceptance of learning management systems: A theoretical framework. Communications of the IBIMA, 2010(2010): p. 1-10. https://ibimapublishing.com/articles/CIBIMA/2010/862128/

Alharbi, S. & Drew, S., (2014), Using the technology acceptance model in understanding academics’ behavioural intention to use learning management systems. International Journal of Advanced Computer Science and Applications. 5(1): p. 143-155. https://dx.doi.org/10.14569/IJACSA.2014.050120

Alia, A., (2017), An investigation of the application of the Technology Acceptance Model (TAM) to evaluate instructors’ perspectives on E-Learning at Kuwait University, Dublin City University. http://doras.dcu.ie/21586/

Alkhattabi, M., Neagu, D., & Cullen, A., (2011), Assessing information quality of e-learning systems: a web mining approach. Computers in Human Behavior, 27(2): p. 862-873. https://doi.org/10.1016/j.chb.2010.11.011

Almaiah, M.A., Al-Khasawneh, A., & Althunibat, A., (2020), Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Education and Information Technologies, p. 1. https://doi.org/10.1007/s10639-020-10219-y

Alshehri, A., Rutter, M.J., & Smith, S., (2019), An implementation of the UTAUT model for understanding Students' perceptions of learning management systems: A study within tertiary institutions in Saudi Arabia. International Journal of Distance Education Technologies (IJDET). 17(3): p. 1-24. https://doi.org/10.4018/IJDET.2019070101

Bhrommalee, P., (2011), Student acceptance of web-based learning: A quantitative analysis within a public university in Thailand, Walden University. https://www.learntechlib.org/p/120983/.

Bouhnik, D. & Marcus, T., (2006), Interaction in distance‐learning courses. Journal of the American Society for Information Science and Technology. 57(3): p. 299-305. https://doi.org/10.1002/asi.20277

Bousbahi, F. & Alrazgan, M.S., (2015), Investigating IT faculty resistance to learning management system adoption using latent variables in an acceptance technology model. The Scientific World Journal, 2015. https://doi.org/10.1155/2015/375651

Buabeng-Andoh, C. & Baah, C., (2019), Investigating the actual usage of learning management system: From perspectives of University students. in 2019 International Conference on Computing, Computational Modelling and Applications (ICCMA). IEEE. http://ir.uew.edu.gh/xmlui/handle/123456789/264

Byungura, J.C. (2015), E-learning management system for thesis process support from a supervisor perspective: The case of SciPro System at University of Rwanda, Jönköping University: Sweden. http://hj.diva-portal.org/smash/record.jsf?pid=diva2%3A840593&dswid=-9660

Carmines, E.G. & Zeller, R.A., (1979), Reliability and validity assessment. Vol. 17: Sage publications. https://dx.doi.org/10.4135/9781412985642

Chao, C.-M., (2019), Factors determining the behavioral intention to use mobile learning: An application and extension of the UTAUT model. Frontiers in psychology. 10: p. 1652. https://doi.org/10.3389/fpsyg.2019.01652

Chatterjee, S. & Simonoff, J.S., (2013), Handbook of regression analysis. Vol. 5: John Wiley & Sons. https://doi.org/10.1111/insr.12020_22

Claar, C., Portolese Dias, L., & Shields, R., (2014), STUDENT ACCEPTENCE OF LEARNING MANAGEMENT SYSTEMS: A STUDY ON DEMOGRAPHICS. Issues in Information Systems. 15(1). https://doi.org/10.48009/1_iis_2014_409-417

Dečman, M., (2015), Modeling the acceptance of e-learning in mandatory environments of higher education: The influence of previous education and gender. Computers in human behavior. 49: p. 272-281. https://doi.org/10.1016/j.chb.2015.03.022

Draper, N.R. & Smith, H., (1998), Applied regression analysis. Vol. 326., John Wiley & Sons. https://www.wiley.com/en-us/Applied+Regression+Analysis%2C+3rd+Edition-p-9780471170822

Dutton, J., Dutton, M., & Perry, J., (2001), Do online students perform as well as lecture students? Journal of Engineering education,. 90(1): p. 131-136. https://doi.org/10.1002/j.2168-9830.2001.tb00580.x

Estriegana, R., Medina-Merodio, J.-A., & Barchino, R., (2019), Student acceptance of virtual laboratory and practical work: An extension of the technology acceptance model. Computers & Education. 135: p. 1-14. https://www.learntechlib.org/p/208189/

Farahat, T., (2012), Applying the technology acceptance model to online learning in the Egyptian universities. Procedia-Social and Behavioral Sciences. 64: p. 95-104. http://dx.doi.org/10.1016/j.sbspro.2012.11.012

Fianu, E., et al., (2018), Factors affecting MOOC usage by students in selected Ghanaian universities. Education Sciences. 8(2): p. 70. https://doi.org/10.3390/educsci8020070

Juárez Santiago, B., et al., (2020), Learning Management System-Based Evaluation to Determine Academic Efficiency Performance. Sustainability. 12(10): p. 4256. https://doi.org/10.3390/su12104256

Juhary, J., (2014), Perceived Usefulness and Ease of Use of the Learning Management System as a Learning Tool. International Education Studies. 7(8): p. 23-34. http://dx.doi.org/10.5539/ies.v7n8p23

Liu, S.-H., Liao, H.-L., & Peng, C.-J., (2005), Applying the technology acceptance model and flow theory to online e-learning users’ acceptance behavior. E-learning. 4(H6): p. H8. https://doi.org/10.48009/2_iis_2005_175-181

Mabed, M. & Koehler, T., (2012), An empirical investigation of students’ acceptance of OLAT as an open web-based learning system in an Egyptian Vocational Education School. International Journal of Web-Based Learning and Teaching Technologies (IJWLTT). 7(1): p. 36-53. https://doi.org/10.4018/jwltt.2012010103

Malhotra, N. & Birks, D., (2007), Marketing Research: an applied approach: 3rd European Edition: Pearson education. http://dx.doi.org/10.1108/S1548-6435(2006)2

Moreno, V., Cavazotte, F., & Alves, I., (2017), Explaining university students’ effective use of e‐learning platforms. British Journal of Educational Technology. 48(4): p. 995-1009. https://doi.org/10.1111/bjet.12469

Paulsen, M.F., (2002), Online education systems: Discussion and definition of terms. NKI distance education. 202: p. 1-8. https://www.porto.ucp.pt/open/curso/modulos/doc/Definition%20of%20Terms.pdf

Paulsen, M.F., (2003), Experiences with learning management systems in 113 European institutions. Journal of Educational Technology & Society. 6(4): p. 134-148. http://ifets.ieee.org/periodical/6_4/13.pdf

Pituch, K.A. & Lee, Y.-k., (2006), The influence of system characteristics on e-learning use. Computers & Education. 47(2): p. 222-244. https://doi:10.1016/j.compedu.2004.10.007

Rahman, N., Rosman, A. & Sahabudin N., (2020),. Students’ Continuance of Using E-Learning System: A Review of Conceptual Frameworks. in IOP Conference Series: Materials Science and Engineering. IOP Publishing. http://dx.doi.org/10.1088/1757-899X/769/1/012044

Revythi, A. & Tselios, N., (2017), Extension of Technology Acceptance Model by using System Usability Scale to assess behavioral intention to use e-learning. Education and Information Technologies. 24(4): p. 2341-2355. https://doi.org/10.1007/s10639-019-09869-4

Saade, R., F. Nebebe, & Tan, W., (2007), Viability of the" technology acceptance model" in multimedia learning environments: A comparative study. Interdisciplinary Journal of E-Learning and Learning Objects. 3(1): p. 175-184. http://dx.doi.org/10.28945/392

Saadé, R.G. & Kira, D., (2006), The emotional state of technology acceptance. Issues in Informing Science & Information Technology,. 3. http://dx.doi.org/10.28945/913

Salloum, S.A. & Shaalan, K., (2018), Factors affecting students’ acceptance of e-learning system in higher education using UTAUT and structural equation modeling approaches. in International Conference on Advanced Intelligent Systems and Informatics. 2018. Springer. https://doi.org/10.1007/978-3-319-99010-1_43

Sattari, A., Abdekhoda, M. & Zarea Gavgani, V., (2017), Determinant factors affecting the web–based training acceptance by health students, applying UTAUT model. International Journal of Emerging Technologies in Learnming. 12(10): p. 112-126. https://doi.org/10.3991/ijet.v12i10,7258

Schumacker, R.E. & Lomax, R.G., (2004), A beginner's guide to structural equation modeling, psychology press. http://dx.doi.org/10.4324/9781410610904

Shen, D., et al., (2006), Social influence for perceived usefulness and ease-of-use of course delivery systems. Journal of Interactive Online Learning. 5(3): p. 270-282. https://www.ncolr.org/jiol/issues/pdf/5.3.4.pdf

Stage, F.K., (1988), University attrition: LISREL with logistic regression for the persistence criterion. Research in Higher Education. 29(4): p. 343-357. https://doi.org/10.1007/BF00992775

Swesi, K., (2012), An Investigation into the Influence of Learning Styles and other Factors Affecting Students’ Perception of Virtual Learning Environments. https://dora.dmu.ac.uk/handle/2086/7105

Tarhini, A., et al., (2015), Towards the Acceptance of RSS to Support Learning: An empirical study to validate the Technology Acceptance Model in Lebanon. Electronic Journal of e-Learning. 13(1): p. 30-41. https://files.eric.ed.gov/fulltext/EJ1051840.pdf

Tarhini, A., et al., (2017), Examining the moderating effect of individual-level cultural values on users’ acceptance of E-learning in developing countries: a structural equation modeling of an extended technology acceptance model. Interactive Learning Environments. 25(3): p. 306-328. https://doi.org/10.1080/10494820.2015.1122635

Ülker, D. & Yılmaz Y., (2016), Learning management systems and comparison of open source learning management systems and proprietary learning management systems. Journal of systems integration. 7(2): p. 18-24. http://dx.doi.org/10.20470/jsi.v7i2.255

Vasanthi Muniasamy, D., Ejalani, I.M., & Anandhavalli M., (2014), Prediction of Learner Perception and Acceptance of E-Learning System for Learning with TAM (Technology Acceptance Model) in King Khalid University, Kingdom of Saudi Arabia. International Journal of Emerging Technology and Advanced Engineering. https://www.semanticscholar.org/paper/Prediction-of-Learner-Perception-and-Acceptance-of-Muniasamy-Eljailani/91a6aa9f311b7b90e65d74fd1c1513302fb41c2a

Venkatesh, V. & Davis, F.D., (2000), A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science. 46(2): p. 186-204. http://dx.doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., et al., (2003), User acceptance of information technology: Toward a unified view. MIS quarterly: p. 425-478. http://dx.doi.org/10.2307/30036540

Wang, H.Y. & Wang, Y.S., (2008), Gender differences in the perception and acceptance of online games. British Journal of Educational Technology. 39(5): p. 787-806. https://doi.org/10.1111/j.1467-8535.2007.00773.x

Yeou, M., (2016), An investigation of students’ acceptance of Moodle in a blended learning setting using technology acceptance model. Journal of Educational Technology Systems. 44(3): p. 300-318. http://dx.doi.org/10.1177/0047239515618464

Žuvić-Butorac, M., et al., (2011), Blended e-learning in higher education: Research on students’ perspective. Issues in Informing Science and Information Technology. 8: p. 409. https://doi.org/10.28945/1427

Downloads

Publicado

25.08.2021

Como Citar

Alharbi, A., Aljojo, N., Zainol, A., Alshutayri, A., Alharbi, B., Aldhahri, E., … Almandeel, S. (2021). Identificação de fatores críticos que afetam a aceitação do Sistema de Gerenciamento de Aprendizagem (LMS) dos alunos na Arábia Saudita. International Journal of Innovation – IJI, 9(2), 353–388. https://doi.org/10.5585/iji.v9i2.19652

Edição

Seção

Artigos
Citations
  • Citation Indexes: 8
Captures
  • Readers: 50
Visualizações
  • Resumo 924
  • PDF (English) 937